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Abstract
Since the beginning of 1980s a telemetric network comprising 18 stations in Greece started 
to measure remotely the transient electric field changes at the Earth’s surface. This article 
investigates the observed variations of Earth’s electric field on 5 September 2023 when the 
flash flood event occurred at Thessaly Greece as result of storm Daniel. The analyses show 
that, during the runoffs, the geoelectric field changes abruptly. Such observations could 
possibly be used as a criterion to estimate the flash flood onset. Upon employing detrended 
fluctuation analysis at various time scales, we identify three stages corresponding to light 
(or no) rain, heavy rain, and flood. The distinctive behaviour during the first two stages of 
the phenomenon under investigation may be used as an early warning. We also show that 
all stages are governed by fractality.

Keywords Earth’s electric field · Flash flood · Runoffs · Seismic electric signal activities

1 Introduction

The Mediterranean region was hit by the storm Daniel between 3 and 8 September 2023. In 
central Greece an unprecedented meteorological event, occurred and was among the hard-
est hits by storm in terms of rainfall. According to Hellenic National Meteorological Ser-
vice, a cumulative height of 350.9 mm of rainfall was received between 4 and 7 September 
2023 in Nea Aghialos close to Volos city. For a detailed review of the impact of the storm 
Daniel in Thessaly Region (Central Greece), see Lekkas et al. (2024).

Since the beginning of 1980s continuous measurements of the electric field variations 
at the Earth’s surface have been made at various sites in Greece, which have been selected 
after tedious investigation (Varotsos and Alexopoulos 1984a, b). A telemetric network 
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of eighteen measuring stations (see Fig.  1 of Varotsos and Alexopoulos (1984a)), was 
deployed transmitting the data to the central station in Athens (ATH) in real time. The digi-
tal data are also saved at the station and nowadays are transmitted to the central station via 
4 G GSM (Global System for Mobile communication). Beyond the usual disturbances due 
to atmospheric or magnetic storms, transient changes of the electric field preceding earth-
quakes (EQs) (Varotsos and Alexopoulos 1984a, b) have been observed which are called 
seismic electric signals (SES). The latter appear as transient changes of the potential differ-
ence ΔV  measured between two electrodes (which are buried at a depth of around 2 m and 
at distances between them from a few tens of m, short dipole, to several km, long dipole, 
as described in detail in the next Section). In the case of major EQs, several SES occur-
ring within a short time (termed SES activities) are recorded a few weeks to 51

2
 months 

in advance (Varotsos et al. 2011b) (cf. an SES activity enables also the estimation of the 
epicentral area and the magnitude of the expected EQ, for example, see Fig. 1 that will be 
also discussed later). One of the measuring stations is located close to Volos city (hereafter 
labelled VOL). A network of short and long dipoles (see Data and Methods) are deployed 
in the wide area from Volos to Nea Aghialos, see Fig. 1.4 of (Varotsos et al. 2011b). Dur-
ing the last four decades two SES activities preceding major EQs have been recorded at 
VOL (Fig. 2): first, an important SES activity was recorded at VOL (cf. its original record 
shown in Fig. 13.3.1 of Varotsos (2005)) on 30 April 1995 that was followed on 15 June 
1995 by the Mw6.5 EQ close to Egion (Peloponnese) (see Sect.  7.2.2 of Varotsos et  al. 
(2011b)). Second, the SES activity depicted in Fig. 19.2 of Lazaridou-Varotsos (2013) on 
17 March 2001 also recorded at VOL that preceded the Mw6.5 EQ on 26 July 2001 (Var-
otsos et al. 2001) close to Skyros island (central Aegean) (cf. In Varotsos et al. (2001) the 
epicentral area of the expected strong EQ was predicted as shown in Fig. 1 by the black 
dashed line).

Very recent techniques have been introduced for the timely and accurate identification 
of seismic electric signals. For example, Xue et al. (2023) developed a real-time automatic 
search engine (RASE) that incorporates an unsupervised convolutional denoising network 
module and a supervised long short-term memory (LSTM) prediction network module to 
automatically search for important SES in real time.

It has been ascertained (Varotsos et  al. 2003) that when continuous measurements of 
both the Earth’s electric field and the geomagnetic field are carried out, additional informa-
tion can be revealed as far as the SES investigation, for example, is concerned. Specifically, 
Uyeda and Tanaka (2004), based on an article entitled Electric fields that arrive before the 
time derivative of the magnetic field prior to major-earthquakes by Varotsos et al. (2003), 
give precise numbers for the time needed to reach from an emitting source (i.e., from an 
EQ epicentre) to a measuring station. In Varotsos et al. (2003) both electric and magnetic 
variations (recorded by three coil magnetometers oriented along three axes: EW, NS and 
vertical) have been measured. It was found that at distances ≈100 km for major earthquakes 
the electric field arrives 1 to 2 s before the time derivative of the horizontal magnetic field. 
Such a striking time difference was explained in Varotsos et  al. (2003) turning to Max-
well’s equations in a cylindrical coordinate system and this is why Uyeda and Tanaka 
(2004) entitled their article “Maxwell’s equations and earthquakes”.

Khan et  al. (2017a), after reviewing the existing literature on forecasting techniques 
(Sarkar et  al. 2015; Khan et  al. 2017b; Suparta et  al. 2015; Boni et  al. 2009; Zhang et  al. 
2016; Rohaimi et al. 2016; Macrander et al. 2009; Barrick et al. 2016; Abdelkader et al. 2013; 
Artigue et al. 2011) approached the investigation of flash floods by observing the geomagnetic 
field using Tesla meter or magnetometer. Their hourly based reading of magnetometer showed 
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that during the runoffs the geomagnetic field briskly reduced, which can be a yardstick to esti-
mate the flash floods. It is the scope of the present work to investigate the aforementioned 
flash flood in Thessaly Greece by employing the measurements of the Earth’s electric field 
changes conducted at Volos area.

The present paper is organized as follows: in the next Section, the Data and Methods are 
summarized. In Sect. 3, the results and their discussion are presented. Finally, Sect. 4 summa-
rizes our findings and concludes the paper.

Fig. 1  The map of the fourth page of the manuscript of Varotsos et  al. (2001) submitted for publication 
on 25 March 2001 showing the sites of the nine stations (red dots) of the real time VAN telemetric net-
work being in operation at that time. The black dashed line around VOL indicates the predicted area of the 
expected EQ. The plus symbols indicate the location of the City of Volos and Nea Aghialos. The epicentre 
of the M6.5 EQ on 26 July 2001 is shown by an open circle
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2  Data and methods

The electric data presented were recorded by the VAN telemetric network which was set 
up for the study of SES almost four decades ago in Greece. Such a research was moti-
vated by the detailed study of the thermodynamics of crystal defects in solids (Varotsos 

Fig. 2  A Recordings of the potential difference ΔV  between the electrodes of the long measuring dipole 
V-SΣB (see Fig. 1.4 of Varotsos et al. (2011b)) from each of the two SES activities, recorded at VOL: on 
17 March 2001 preceding the Aegean EQ M

w
6.5 on 26 July 2001 (red) (Varotsos et al. 2001) and the one 

(green) on 30 April 1995 that was followed by the Egion EQ M
w
6.5 on 15 June 1995 (see Sect. 7.2.2 of 

Varotsos et al. (2011b); see also Table 13.3.1 in page 280 of Varotsos (2005)). The sampling rate for the 
former is 1 sample/s while for the latter is 1 sample/10 s. B The DFA exponent has been obtained to be � = 
1.05 and 0.926, respectively
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2005) that opened the possibility that rupture in solids could be preceded by transient 
electric signals. Thus, continuous measurements of the electric field of the Earth have 
been carried out in Greece since 1982 by the Greek scientists Varotsos, Alexopoulos 
and Nomicos. This is the reason this method is called VAN method. The telemetric net-
work of eighteen measuring stations via leased telephone lines was completed (Varotsos 
and Alexopoulos 1984a, b) by 1983 (see Fig. 1 of Varotsos and Alexopoulos (1984a), 
as mentioned). Data are collected and transmitted in real time(Nomicos and Chatzidi-
akos 1993; Nomicos et al. 1996; Varotsos 2005) to the central station which is located 
at a suburb of Athens (ATH). Non-polarizable electrodes Pb∕PbCl2 at a depth of 2 m 
are used and the potential difference between two of them (that constitute a measur-
ing electric dipole) is measured. A minimum of eight measuring electric dipoles was 
initially installed at each station; some of these dipoles have lengths (L) between 50 m 
and 400  m and are called short dipoles, while others have appreciably longer lengths 
(usually between 2 and 20 km) and are called long dipoles. In 1990s, beyond the afore-
mentioned real time data collecting system, dataloggers (Campbell 21X connected to a 
portable PC) were installed at several stations to collect data with sampling rate fs = 1 
sample/s. These data were finally stored only during SES collection, and during the 
period extending from several minutes before a significant EQ, until a few minutes after. 
The averages, taken every 20 s (cf. initially it was 1 sample/10 s), were transmitted to 
the central station (once or twice per day) through dial-up. In 2010s, the dial-up collec-
tion was replaced by GSM and the electric field data presented in Fig. 3 come from this 
method with fs = 1 sample/s. Data presented in Fig.  2 come from the older collection 
method and this is the reason that two different sampling rates were used.

Short and long measuring electric dipoles are deployed in the wide area of Volos (see 
Fig. 1.4 of Varotsos et al. (2011b)) for the detection of the anomalous variations of the 
electric field of the Earth.

The rainfall data and rain duration from Nea Aghialos are provided, upon request, 
from the Hellenic National Meteorological Service. The data start from 09:00 at 4 Sep-
tember 2023 and a value is reported every 3 h.

In our analysis, we apply the Detrended Fluctuation Analysis (DFA), which was first 
introduced by Peng et al. (1994) and used to quantify long-range correlation and fractal 
scaling behaviour in the nonstationary behaviour of time series.

In general, the DFA presents some assets over other traditional methods. For 
instance, it detects intrinsic self-similarity in many nonstationary time series, especially 
in those that have a slow trend variation; also it prevents from illusory self-similarity. 
In the past few years, the DFA method has been used to effectively analyse a variety of 
time series involving several fields of knowledge, such as DNA (Peng et al. 1994; Man-
tegna et al. 1994; Buldyrev et al. 1995), cardiac dynamics  (Ivanov et al. 1999; Havlin 
et al. 1999; Stanley et al. 1999), neuronal oscillations (Hardstone et al. 2012), heartbeat 
fluctuation (Bunde et al. 2000; Ivanov et al. 1998), meteorology (Ivanova et al. 2003), 
climatology (Varotsos et al. 2013), etc.

The method consists of the following: beginning with a time series or signal x(i), 
with i = 1, 2,… ,N and N the length of the time series, the steps of the DFA method are 
(e.g., see Varotsos et al. (2023): 

1. We first construct the signal profile of the time series by integrating x(i) with respect to 
its mean ⟨x⟩ : 
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 where ⟨x⟩ is the mean: 

2. Then the profile y(i) is divided into non-overlapping segments of equal length n. Then, 
for all segments, a least squares line is fit to the data in the corresponding segment, 
which represents a local trend in that segment. From the linear fit, we use the y-coordi-
nate to define the local trends, yn(i).

(1)y(i) =

i�

j=1

[x(j) − ⟨x⟩]

(2)⟨x⟩ = 1

N

N�

j=1

x(j).

Fig. 3  A The rainfall data at Nea Aghialos station of the Hellenic National Meteorological Service until 
15:00 UTC on 5 September 2023. The red bars show the rain height in mm (left scale) while the blue line 
denotes the rain duration in minutes (right scale). The rain height as well as the rain duration are reported 
every three hours. B The recordings of the electric dipoles ( ΔV  ) at VOL station of the VAN telemetric net-
work from 00:00 UTC on 4 September 2023 until 15:00 UTC on 5 September 2023
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3. We detrend the profile y(i), by subtracting the local trend, yn(i) , in each one of the seg-
ments, i.e., we obtain: 

4. The mean squared of the integrated and detrended time series is computed: 

5. We repeat steps 2, 3, and 4 for each one of the characteristic time scales set in the time 
series.

6. Finally, we compute a fit between F(n) and the segment size n: F(n) ∝ n� . The slope of 
a linear fit between log-rms ( log[F(n)] ) and log-scales ( log(n) ) provides the scaling (or 
DFA) exponent �.

If 𝛼 < 0.5 , the signal or time series is anti-correlated; if � ≃ 0.5 , the signal is uncorrelated 
(white noise); if 𝛼 > 0.5 , the signal is correlated; and if � ≃ 1 , the signal is 1/f-noise (pink 
noise). The results presented below, have been obtained by the DFA (Peng et al. 1994, 1995a) 
computer code dfa.c developed by J. Mietus, C.-K. Peng, and G. Moody available from 
Physionet (Goldberger et al. 2000).

The following remark is important for the application of DFA: in the beginning of 2000s 
a new concept of time, the natural time was introduced (Varotsos et al. 2002) and has been 
shown that unique dynamic features hidden behind can be revealed from the time series of 
complex systems. In particular, natural time analysis can serve for the discrimination between 
SES and man made “artificial” noise as well as for a better estimation of the time window 
between the initiation of an SES activity and an EQ (Varotsos et al. 2011b). Only in natural 
time analysis DFA can distinguish SES activities from “artificial” (man-made) noises leading 
to an exponent � close to unity for the SES activities, while � ≈ 0.65 − 0.8 for artificial noises 
(see p.210 of Varotsos et al. (2011b)). In addition, although opinions have been expressed that 
the self-organized criticality should only emerge at continental level (Perinelli et  al. 2024), 
natural time analysis of seismicity reveals that, for example, the normalized power spectrum—
defined in natural time (Varotsos et al. 2011b, 2023)—of the Southern California Earthquake 
Catalog (SCEC), covering part of the San Andreas fault system, and Japan follow a common 
curve (see, e.g., Fig. 6.4 of, Varotsos et al. (2011b)) in spite of the fact that they are located at 
different continents. Furthermore, natural time analysis reveals that a common feature emerges 
for the order parameter fluctuations of seismicity in different correlated systems as for example 
for the worldwide seismicity, SCEC, Japan etc (Sarlis et al. 2011). Very recently was shown 
that natural time analysis reveals that before major EQs independent datasets of different 
geophysical observables (seismicity, Earth’s magnetic and/or electric field) exhibit changes, 
which are observed simultaneously. This reflects that natural time is the correct framework to 
study EQ precursory phenomena (Varotsos et al. 2024).

3  Results and discussion

The rainfall data together with the electric measurements are shown in Fig.  3. Fig.  3A 
shows the rainfall height at Nea Aghialos along with the rain duration, while Fig.  3B 
depicts the recordings of the electrostatic potential difference ΔV  at electric dipoles of the 

(3)Yn(i) = y(i) − yn(i).

(4)F(n)2 ≡
1

N

N∑

i=1

[Yn(i)]
2
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VOL station for the same time period. Three distinct stages could be perceived in the lat-
ter figure: the stage at which the ΔV  variations are on the average around 40 mV (see also 
Fig. 4A that shows the aforementioned electric channels at this time period), in almost all 
channels, and it lasts from 4 September 2023 at 10:00 UTC, when light rain was reported 
in Fig. 3A, until 22:00 UTC on the same day. At this time period the rain was 0.0–3.6 mm 
and not continuous (see Fig. 3A). A second stage, at which the electric variation increased 
almost by one order of magnitude (see also Fig. 4B), and lasted from 4 September 2023 
at 22:00 UTC until 5 September 2023 05:00 UTC. The physical reason behind this vari-
ation could be attributed to electrochemical noise, which was discussed by Varotsos and 
Lazaridou (1991). During this time period it was continuously raining and the rain height 
was also increased by one order of magnitude reaching a value of 33.2 mm between 00:00 
and 03:00 UTC on 5 September 2023. (We note that according to the Hellenic National 
Meteorological Service www. emy. gr (accessed on 20 June 2024) the monthly mean pre-
cipitation (rain) height is 38.5 mm.) The third stage is characterized by very high values 
of ΔV  (see also Fig. 4C), larger than 750 mV, at the long electric dipoles that have one of 
their electrodes located either at Volos city or at Nea Ionia (a town side by side with Volos 
city). It is most probably the time at which these electrodes were submerged in the water. It 
should be noted that the highest rain of 114.5 mm was reported between 21:00 and 24:00 
on the 5 th of September 2023.

The DFA exponent � is calculated for the electric dipole presented in Fig. 5A, where 
one of the electrodes is located at Nea Ionia very close to Volos city (the other electrode 
is located at 39.28◦

N 22.88◦

E ). The red part of the signal represents the time of light and 
not continuous rain, while the green and blue colors are for the continuous heavy rain and 
the third stage period, respectively. The DFA plot of the whole time series of this channel 
is shown in Fig. 5B. These data could be fit with three straight lines and the correspond-
ing scaling exponents are � = 1.25, 0.75 and 1.07 for the short (i.e., smaller than ≈ 50 s), 
the intermediate (between 50 and 300 s) and the long time lags ( ≥ 300 s), respectively. 
Note that the exponent � = 0.75 found for the intermediate scale is comparable with the 
values reported for “artificial” noises when they are analysed in natural time (see p. 210 of 
Varotsos et al. (2011b)), while the values of � = 1.25 for the small time lags indicate non-
stationarity. For time lags ≥ 300 s the signal is 1/f-noise.

Figure 5C–E depict the DFA plot for the three parts of the electric signal in Fig. 5A 
related to three different situations concerning the rainfall. The common characteristic 
in the plots of DFA for the three parts of these electric signals is that the data are not 
described by a single DFA exponent � as in the case of SES, see Fig. 2B, but a different 
exponent should be used for the small and the large scales (for the importance of crosso-
vers in DFA see Peng et al. (1995b); Chen et al. (2002); Telesca et al. (2012)). For the first 
(red) part of the signal in Fig. 5A, with light or no rain, which corresponds to time lags 
smaller than ∼ 50 s � = 1.08 indicating 1/f-noise, while for time lags > 50 s � = 1.41 indi-
cating non-stationarity. The second part (green) of the signal corresponds to heavy rain and 
the value of � is 0.48 (white noise) and 1.15 (1/f-noise) for small and large scales, respec-
tively. The crossover between the two scales is at ∼ 250 s. For the blue part of Fig. 5E, the 
DFA plot shows two scales that cross at ∼ 100 s with � values 1.23 and 0.92 for the small 
and the large scales, respectively.

The appearance of crossovers in Fig. 5 is in sharp contrast to the description of the DFA 
of the electric field in the case of SES activities, see Fig. 2. There we observe that single 
DFA exponents close to unity appear indicating an 1/f fractal behaviour of noise which is 
ubiquitous in complex systems as well as in electronic devices, for a recent example see, 
e.g., (Samara et  al. 2023). We emphasize, however, that a clear distinction of SES from 

http://www.emy.gr
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noise is achieved only when analysing the corresponding signals in natural time (Varotsos 
et al. 2011b, 2009). At this point, we have to note that very recently Perinelli et al. (2024) 
studied the fractality of EQs and found results compatible with those obtained by natural 
time analysis and earthquake nowcasting (Varotsos et al. 2021).

Fig. 4  The recordings of the 
electric dipoles ( ΔV  ) at VOL 
depicted in Fig. 3B zoomed at 
the three stages mentioned in 
Sect. 3. During A the time period 
from 10:00 to 22:00 UTC on 4 
September 2023 that the rain 
height was 0.0–3.6 mm and not 
continuous, B the time of con-
tinuous raining (the rain height 
was increased by one order of 
magnitude ≈ 33.2 mm, compared 
to (A)) and C the time at which 
electrodes were submerged in 
the water
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Another important point to be mentioned is the difference between the values of the 
DFA exponents � at the short scales during the first stage, see Fig. 5C, and the second 
stage, see Fig. 5D. By studying all the channels depicted in Fig. 3, we verified that dur-
ing the first stage (light rain), for short scales n < 50 s, � ≈ 1.0 while during the second 
stage (heavy rain), the corresponding DFA exponent for short scales ( n < 250 s) falls 
to � ≈ 0.5 . Interestingly, such a transition from persistent behaviour to almost random 
behaviour is also observed in a variety of critical phenomena including EQs or sudden 

Fig. 5  A The electric channel 11 (see Fig. 4) used in the DFA analysis: the red, green, and blue points cor-
respond to the data depicted in Fig. 4A–C, respectively. The DFA for: B the whole record shown in (A), 
where three scales are observed with DFA exponent � = 1.25 for the small scales � = 0.75 for the interme-
diate scales and � = 1.07 for the large scales. C The first part of the signal (red portion in (A)). Two scales 
are observed with � = 1.08 and 1.41 for the small and the large scales, respectively. D The middle part of 
the record (green portion in (A)). Two scales are observed with � = 0.48 for the small scales and � = 1.15 
for the large scales. E The last part of the record (blue portion in (A)) where again two scales are observed 
with � = 1.23 and 0.92 for small and large scales, respectively
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cardiac death, see Varotsos et al. (2023). This is of key importance because it can serve 
as precursory stage for an impending flash flood.

In order to examine if a similar phenomenon was observed in a previous case, we stud-
ied the records of the VAN network on 9 October 2006, when a flash flood hit the city of 
Volos (Papaioannou et al. 2019). Figure 6 depicts the records of channels 9 and 10 of VOL 
geoelectric station on 9 October 2006. If we analyse by means of DFA the variations of the 
potential difference before these two channels were led to saturation, we obtain the results 
shown in Fig. 7. In the latter figure we observe significantly smaller � values for the shorter 
scales. This is in accordance with the aforementioned observation of � ≈ 0.5 for the short 
scales, during heavy rain, pointing to the importance of this phenomenon as precursory 
stage for an impending flash flood. Additionally, the duration of this precursory phenom-
enon which is 7 h before the 5 September 2023 flash flood and 6 h before the 9 October 
2006 flash flood allows the early warning with respect to aims of civil protection.

Scaling is used in order to unify spatial scaling flood statistics with physical processes 
for solving the global problem of prediction of floods from ungauged and poorly gauged 
basins (Gupta 2004). As stated by Gupta (2004), a mathematical framework has been 
developed to predict the scaling parameters from space-time variable physical processes 
so that the corresponding empirical values of these parameters can be understood and 

Fig. 6  A Recordings of the elec-
tric dipoles of the VOL station of 
the VAN network on 9 October 
2006. Panel B is an excerpt of 
(A) before the saturation of the 
channels due to the flash flood
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predicted physically, see also Gupta et al. (1996); Gupta and Waymire (1998); Menabde 
et al. (2001); Veitzer and Gupta (2001). Medhi and Tripathi (2015) proposes a methodol-
ogy for exploring the relationship between flood scaling exponents and physical attributes 
of a river basin by using observed data. Very recently Mazivanhanga et al. (2024) found 
that peak discharge in the La Sierra catchment exhibits powerlaw relationships. Other 
recent studies on scaling laws have demonstrated the potential of estimating flood param-
eters by analysing the physical characteristics of drainage areas e.g., Zheng et al. (2021); 
Medhi and Tripathi (2015); Gupta (2017); Formetta et  al. (2021); Gupta et  al. (2010); 
Ayalew et al. (2015, 2018).

The atmospheric electric field has been also used as a precursor for various meteoro-
logical parameters. For example, Bernard et al. (2020) investigated the atmospheric electric 
field derivative frequency distribution prior to bursts of intense rainfall in the Dolomite 
Alps near Cortina d’Ampezzo, Italy. They designed a regression model which considers the 
amplitude maximum and the difference in time between the crossings of the electric field 
derivatives of the zero axis. Their model suggests a mild relationship between electric field 
and rainfall intensity in an alpine environment. Okubo et al. (2006) found that a strong cor-
relation between the instantaneous fluctuations of atmospheric electric field and the wind 
speed in the convenient meteorological environment, while Bennett and Harrison (2007) 
say that changes in the weather are often associated with pronounced changes in mean and 
variability of the Potential Gradient as noted originally by early workers in atmospheric 
electricity.

The results presented above suggest that heavy rain may affect the electrical signals SES 
that are recorded by the VAN network for the prediction of EQs. This is well known for the 
case of Greece, see e.g. Varotsos and Lazaridou (1991); Varotsos et al. (1993) and has been 
treated by the use of multiple measuring dipoles using independent electrodes, which are 
not expected to flood simultaneously except for the cases of extreme flash floods treated 
here. During the latter cases we have inevitably an interruption of SES monitoring. As 
shown, however, by Skordas et al. (2010) and Varotsos et al. (2011a) even a significant data 

Fig. 7  The DFA of the potential difference depicted in Fig. 6B. Two scales are observed for each channel 
with the smaller exponent � in the range 0.329–0.420 corresponding to the shorter scales
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loss does not affect the ability to detect SES before strong EQs upon employing natural 
time and DFA. Such techniques could be also applied when employing VAN method for 
predicting EQs in tropical countries during rainy season.

The above indicate that the installation of multiple measuring electric dipoles using 
independent electrodes and the continuous monitoring of their recordings by DFA (which 
can be easily automated) has the potential to provide automatic early warning for extreme 
hydrometeorological phenomena. Such an application involves, of course, a careful selec-
tion of the electrode sites at which the electric field on ground surface will be measured and 
monitored continuously by studying DFA. Electrode sites close to riverbanks or streams 
which are likely to flood during heavy rain should be preferred and for DFA the recorded 
data should be analysed every few hours, see, e.g., Figs. 5D and 7. For example, in the case 
of the recent catastrophic flood in Valencia Spain on 29 October 2024 NASA (2024) if we 
had applied this method of monitoring DFA of the electric channels, we could possibly 
have obtained an automatic early warning.

4  Summary and conclusions

In summary, analysing the Earth’s electric field data recorded during the storm Daniel at 
the wide area of Volos, by using the DFA analysis, we found different scaling exponents 
for the light rain, the heavy rain and the flood periods. This method may provide a new sci-
entific framework for solving the problem of prediction of floods.

In particular, the DFA analysis of the Earth’s surface electric field data at VOL station 
during the storm Daniel in Thessaly, the following interesting characteristics emerge: first, 
before the beginning of heavy rain the DFA exponent � for short scales is close to unity. 
Second, this DFA exponent turns to around 0.5 (random behaviour) during the heavy rain. 
This could be considered as precursory stage of an impending flash flood. Third, when the 
flood started, abruptly very large ΔV  values have been observed and the DFA exponent � 
turned to 𝛼 > 1.

Note that the above characteristics have been observed at VOL station (which is located 
at a village outside Volos) earlier than the flash flood hit the main part of Volos city. It is 
interesting that the above findings have been obtained by means of DFA that can be very 
easily implemented in online signal analysis methods operating for the prediction of floods.

The first two characteristics stating that from the beginning of heavy rain the DFA expo-
nent turns from unity at short scales to 0.5 during heavy rain is strikingly reminiscent of 
the following fact: such a transition from a persistent behaviour to almost random behav-
iour has been observed in various critical phenomena such as earthquakes and sudden car-
diac death (Varotsos et al. 2023).
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