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Electric field variations that appear before rupture have been recently studied by employing the
detrended fluctuation analysis �DFA� to quantify their long-range temporal correlations. These
studies revealed that seismic electric signal �SES� activities exhibit a scale invariant feature with an
exponent �DFA�1 over all scales investigated �around five orders of magnitude�. Here, we study
what happens upon significant data loss, which is a question of primary practical importance, and
show that the DFA applied to the natural time representation of the remaining data still reveals for
SES activities an exponent close to 1.0, which markedly exceeds the exponent found in artificial
�man-made� noises. This enables the identification of a SES activity with probability of 75% even
after a significant �70%� data loss. The probability increases to 90% or larger for 50% data loss.
© 2010 American Institute of Physics. �doi:10.1063/1.3479402�

Complex systems usually exhibit scale-invariant features
characterized by long-range power-law correlations,
which are often difficult to quantify due to various types
of nonstationarities observed in the signals emitted. This
also happens when monitoring geoelectric field changes
aiming at detecting seismic electric signal (SES) activities
that appear before major earthquakes. To overcome this
difficulty the novel method of detrended fluctuation
analysis (DFA) has been employed, which when combined
with a newly introduced time domain termed natural
time, allows a reliable distinction of true SES activities
from artificial (man-made) noises. This is so because the
SES activities are characterized by “infinitely” ranged
temporal correlations (resulting in DFA exponents close
to unity) while the artificial noises are not (since all the
noises studied to date have DFA exponents at most
around 0.8). The analysis of SES observations often meets
the difficulty of significant data loss caused either by fail-
ure of the data collection system or by removal of seri-
ously noise-contaminated data segments. Here we focus
on the effect of significant data loss on the long-range
correlated SES activities quantified by DFA. We find that
the remaining data, even after a considerable percentage
of data loss (which may reach È80%), may still be re-
vealing the scaling properties of SES activities. This is
achieved by applying DFA not to the original time-series
of the remaining data but to those resulted when employ-
ing natural time.

I. INTRODUCTION

The output signals of complex systems exhibit fluctua-
tions over multiple scales1,2 which are characterized by the
absence of dynamic scale, i.e., scale-invariant behavior.3

These signals, due to the nonlinear mechanisms controlling

the underlying interactions, are also typically nonstationary
and their reliable analysis cannot be achieved by traditional
methods, e.g., power-spectrum and autocorrelation
analysis.4–6 On the other hand, the detrended fluctuation
analysis �DFA� �Refs. 7 and 8� has been established as a
robust method suitable for detecting long-range power-law
correlations embedded in nonstationary signals. This is so
because a power-spectrum calculation assumes that the sig-
nal is stationary and hence when applied to nonstationary
time-series it can lead to misleading results. Thus, a power-
spectrum analysis should be necessarily preceded by a test
for the stationarity of the �portions of the� data analyzed. As
for the DFA, it can determine the �mono� fractal scaling
properties �see below� even in nonstationary time-series, and
can avoid, in principle, spurious detection of correlations that
are artifacts of nonstationarities. DFA has been applied with
successful results to diverse fields where scale-invariant be-
havior emerges, such as DNA,9–16 heart dynamics,17–27 cir-
cadian rhythms,28–31 meteorology32 and climate temperature
fluctuations,33–37 economics,38–44 as well as in the low-
frequency ��1 Hz� variations of the electric field of the
earth that precede earthquakes45–47 termed seismic electric
signals48–54 and in the relevant55–58 magnetic field
variations.47

Monofractal signals are homogeneous in the sense that
they have the same scaling properties, characterized locally
by a single singularity exponent h0, throughout the signal.
Thus, monofractal signals can be indexed by a single global
exponent, e.g., the Hurst exponent H�h0, which suggests
that they are stationary from the viewpoint of their local
scaling properties �see Refs. 22 and 59 and references
therein�. Since DFA can measure only one exponent, this
method is more suitable for the investigation of monofractal
signals. In some cases, however, the records cannot be ac-
counted for by a single scaling exponent �i.e., do not exhibit
a simple monofractal behavior�. In general, if a multitude ofa�Electronic mail: pvaro@otenet.gr.
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scaling exponents is required for a full description of the
scaling behavior, a multifractal analysis must be applied.
Multifractal signals are intrinsically more complex, and in-
homogeneous, than monofractals �see Ref. 22 and references
therein�. A reliable multifractal analysis can be performed by
the multifractal detrended fluctuation analysis �MF-DFA�
�Refs. 60 and 61� or by the wavelet transform �e.g., see Refs.
59 and 62�.

DFA has been applied, as mentioned, to the SES activi-
ties. It was found45 that when DFA is applied to the original
time-series of the SES activities and artificial �man-made�
noises, both types of signals lead to a slope at short times
�i.e., �t�30 s� lying in the range �=1.1–1.4, while for
longer times the range �=0.8–1.0 was determined without,
however, any safe classification between SES activities and
artificial noises. On the other hand, when employing natural
time �see Sec. II�, DFA enables the distinction between SES
activities and artificial noises: for the SES activities the
�-values lie approximately in the range of 0.9–1.0 �or be-
tween 0.85 and 1.1, if a reasonable experimental error is
envisaged�, while for the artificial noises �due to man-made
sources� the �-values are markedly smaller, i.e.,
�=0.65–0.8. In addition, MF-DFA has been used45,46 and it
was found that this multifractal analysis, when carried out in
the conventional time frame, did not lead to any distinction
between these two types of signals, but does so, if the analy-
sis is made in the natural time domain.

The aforementioned findings of DFA for SES activities
are consistent with their generation mechanism63,64 which
could be summarized as follows. Beyond the usual intrinsic
lattice defects65–70 in ionic solids in particular, because of
ubiquitous aliovalent impurities, extrinsic defects are formed
for charge compensation. A portion of these defects is at-
tracted by the nearby impurities, thus forming electric di-
poles the orientation of which can change by defect migra-
tion. In the focal area of an impending earthquake the stress
gradually increases and hence affects the thermodynamic pa-
rameters of this migration, thus it may result in a gradual
decrease of their relaxation time. When the stress �pressure�
reaches a critical value, a cooperative orientation of these
dipoles occurs, which leads to the emission of a transient
signal. This signal constitutes the SES activity and, since it is
characterized by critical dynamics, should exhibit infinitely
range temporal correlations �in the sense that, as mentioned
above, for SES activities �DFA�1 over five orders of
magnitude47�. In practice, for physical reasons, e.g., finite
size effects, there is no infinity71 but the scaling is observed
over a limited range of scales and this is why we write here-
after “infinite.”

It is the basic aim of this study to investigate how sig-
nificant data loss affects the scaling behavior of long-range
correlated SES activities. This has been inspired from a simi-
lar recent study of Ma et al.72 where they also investigated
the effects of data loss on long-term correlations and intro-
duced a new segmentation approach to generate surrogate
signals by randomly removing data segments from stationary
signals with different types of long-range correlations. The
practical importance of this study becomes very clear upon
considering that such a data loss is inevitable mainly due to

the following two reasons. First, failure of the measuring
system in the field station, including the electric measuring
dipoles, electronics, and the data collection system, may oc-
cur especially due to lightning. Second, noise-contaminated
data segments are often unavoidable due to natural changes
such as rainfall, lightning, induction of geomagnetic field
variations, and ocean-earth tides besides the noise from arti-
ficial �man-made� sources including the leakage currents
from dc driven trains. The latter are common in Japan where
at some sites high man-made noise may last for almost 70%
of the time every day. We clarify, however, that even at such
noisy-stations in Japan, several clear SES activities have
been unambiguously identified73 during the night �when the
noise level is low�. In addition, prominent SES activities
were recently reported74 at noise-free stations �far from in-
dustrialized regions� having long duration, i.e., of the order
of several weeks. As we shall see, our results described in
Sec. IV are in essential agreement with those obtained in the
innovative and exhaustive study of Ma et al.72 Before pro-
ceeding to our results, we will briefly summarize DFA and
natural time analysis in Sec. II, and then present in Sec. III
the most recent SES data along with their analysis in natural
time. In Sec. V, we summarize our conclusions.

II. DETRENDED FLUCTUATION ANALYSIS
AND NATURAL TIME

We first sum the original time-series xi and determine the
profile y�i���k=1

i �xk− x̃�, i=1, . . . ,N, where x̃ is the average
value of xi. We then divide this profile of length N into
N / l��Nl� nonoverlapping fragments of l-observations. Next,
we define the detrended process yl,��m�, in the �th fragment,
as the difference between the original value of the profile and
the local �linear� trend. We then calculate the mean variance
of the detrended process,

F2�l� =
1

Nl
�
�=1

Nl

f2�l,�� , �1�

where

f2�l,�� =
1

l
�
m=1

l

yl,�
2 �m� . �2�

If F�l�	 l�, the slope of the log F�l� versus log l plot leads to
the value of the exponent �DFA��. �This scaling exponent is
a self-similarity parameter that represents the long-range
power-law correlations of the signal.� If �DFA=0.5, there is
no correlation and the signal is uncorrelated �white noise�; if
�DFA�0.5, the signal is anticorrelated; if �DFA�0.5, the sig-
nal is correlated and specifically the case �DFA=1.5 corre-
sponds to the Brownian motion �integrated white noise�.

We now briefly explain the natural time �. In a time-
series comprising N events, the natural time �k=k /N serves
as an index75 for the occurrence of the kth event. The evolu-
tion of the pair ��k ,Qk� is studied,45,46,75–80 where Qk denotes
a quantity proportional to the energy released in the kth
event. For dichotomous signals, which is frequently the case
of SES activities, the quantity Qk can be replaced by the
duration of the kth pulse. By defining pk=Qk /�n=1

N Qn, we
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have found75 that the variance of the natural time � weighted
by pk,

	1 = 
�2� − 
��2, �3�

where 
f������k=1
N pkf��k�, may be used45,46 for the identifi-

cation of SES activities. Namely, the following relation
should hold:

	1 � 0.070. �4�

The entropy S in the natural time domain is defined as46

S � 
� ln �� − 
��ln
�� . �5�

It exhibits77 Lesche81,82 �experimental� stability, and for SES
activities �critical dynamics� it is smaller46 than the value
Su�=ln 2 /2−1 /4�0.0966� of a “uniform” �u� distribution
�as defined in Refs. 45, 46, and 76, e.g., when all pk are equal
or Qk are positive independent and identically distributed
random variables of finite variance�. In this case, 	1 and S
are designated 	u�=1 /12� and Su, respectively. Thus, S�Su.
The same holds for the value of the entropy obtained77,79

upon considering the time reversal T̂ �the operator T̂ is de-

fined by T̂pk= pN−k+1�, which is labeled by S−.
In summary, the SES activities, in contrast to the signals

produced by man-made electrical sources, when analyzed in
natural time �see Sec. I�, exhibit infinitely ranged temporal
correlations46,75 and obey the conditions79

	1 � 0.07 �6�

and

S,S− � Su. �7�

III. THE EXPERIMENTAL DATA

In Fig. 1�a�, we depict the SES activity recorded at Io-
annina station �Northwestern Greece� on 18 April 1995. It
preceded the 6.6 earthquake on 13 May 1995, which was the
strongest one in Greece during the 25 year period 1983–
2007. The DFA results on these data will be presented in Sec.
IV. In addition, a recent SES activity in Greece is depicted in
Figs. 1�b� and 1�c�. This has been recorded at Lamia station
located in Central Greece during the period 27–30 December
2009. For the details of the subsequent seismicity, see Refs.
83 and 84.

The two signals in Figs. 1�a� and 1�b� have been classi-
fied as SES activities after analyzing them in natural time. In
particular, for the signal in Fig. 1�a�, straightforward appli-
cation of natural time analysis leads to the conclusion that
the conditions �6� and �7� are satisfied �see Table I of Ref.
77�. Further, the DFA analysis of the natural representation
of this signal gives an exponent �DFA=0.95�4��1. �We also
note that the classification of this signal as SES activity had
been previously achieved by independent procedures
discussed85 in the Royal Society Meeting that was held dur-
ing 11–12 May 1995 before86 the occurrence of the 6.6 earth-
quake on 13 May 1995.� For the long duration signal of
Fig. 1�b�, the procedure explained in detail in Ref. 47 was
followed.

IV. DATA ANALYSIS AND RESULTS

Following Ma et al.,72 we now describe the segmenta-
tion approach used here to generate surrogate signals ũ�i� by
randomly removing data segments of length L from the origi-
nal signal u�i�. The percentage p of the data loss, i.e., the
percentage of the data removed, characterizes the signal ũ�i�.
The procedure followed is based on the construction of a
binary time-series g�i� of the same length as u�i�. The values
of u�i� that correspond to g�i� equal to unity are kept,
whereas the data of u�i� when g�i� equals zero are removed.
The values of u�i� kept are then concatenated to construct
ũ�i�.

The binary time-series g�i� is obtained as follows.72 �i�
We first generate the lengths lj =L with j=1,2 , . . . ,M of the
removed segments by selecting M to be the smallest integer
so that the total number of removed data satisfies the condi-
tion � j=1

M lj 
 pN. �ii� We then construct an auxiliary time-
series a�k� with a�k�=L when k=1,2 , . . . ,M and a�k�=1
when k=M +1, . . . ,N−M�L+1� of size N−M�L+1�. �iii� We
shuffle the time-series a�k� randomly to obtain ã�k�. �iv� We
then append ã�k� to obtain g�i�: if ã�k�=1 we keep it, but we
replace all ã�k�=L with L elements of value “0” and one
element with value “1.” In this way, a binary series g�i� is
obtained, which has a size equal to the one of the original
signal u�i�. We then construct the surrogate signal ũ�i� by
simultaneously scanning the original signal u�i� and the bi-
nary series g�i�, removing the ith element of u�i� if g�i�=0
and concatenating the segments of the remaining data to ũ�i�.

The resulting signal ũ�i� is later analyzed in natural time,
thus leading to the quantities 	1, S, and S− as well as to the
DFA exponent �DFA in natural time. Such an example is
given in Fig. 2, which was drawn on the basis of the SES
activity data depicted in Fig. 1�a�.
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FIG. 1. �Color online� Examples of the electric field recordings in normal-
ized units, i.e., by subtracting the mean value � and dividing by the standard
deviation �. The following SES activities are depicted: �a� the one recorded
on 18 April 1995 at Ioannina station; �b� the long duration SES activity
recorded from 27 December 2010 to 30 December 2009 at Lamia station.
�c� is an excerpt of �b� showing that, after long periods of quiescence, the
electric field exhibits measurable excursions �transient pulses�.

033111-3 Identifying seismic electric signals Chaos 20, 033111 �2010�

Downloaded 02 Dec 2010 to 195.134.94.87. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



Typical DFA plots, obtained for L=200 and p=30%,
50%, and 70%, are given in Fig. 3. For the sake of compari-
son, this figure also includes the case of no data loss �i.e.,
p=0�. We notice a gradual decrease of �DFA upon increasing
the data loss, which affects our ability to recognize a signal
as SES activity.

In order to evaluate our ability to identify SES activities
from the natural time analysis of surrogate signals with vari-
ous levels of data loss, three procedures have been at-
tempted:

Procedure 1: Investigation whether �DFA, which resulted
from the DFA analysis of the natural time representation of a
signal, belongs to the range 0.85��DFA�1.0. If it does, the
signal is then classified as SES activity. Figure 4�a� shows
that for a given amount of data loss �p=const�, upon increas-
ing the length L of the randomly removed segment, the prob-

ability p1 of achieving, after making 5000 attempts �for a
given value of p and L�, the identification of the signal as
SES activity is found to gradually increase versus L at small
scales and stabilizes at large scales. For example, when con-
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FIG. 2. �Color online� �a� Example of a surrogate time-series �in normalized
units as in Fig. 1� obtained by removing segments of length L=200 from the
signal of Fig. 1�a� with 50% data loss �i.e., p=0.50�. �b� The natural time
representation of �a�. The values obtained from the analysis of �b� in natural
time are 	1=0.067�4�, S=0.076�4�, S−=0.071�4�, and aDFA=0.90�5�.
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FIG. 3. �Color online� The dependence of the DFA measure F�l� vs the scale
l in natural time: we increase the percentage of data loss p by removing
segments of length L=200 samples from the signal of Fig. 1�a�. The black
�plus� symbols correspond to no data loss �p=0�, the red �crosses� to 30%
data loss �p=0.3�, the green �asterisks� to 50% data loss �p=0.5�, and the
blue �squares� to 70% data loss �p=0.7�. Except for the case p=0, the data
have been shifted vertically for the sake of clarity. The slopes of the corre-
sponding straight lines that fit the data lead to �DFA=0.95, 0.94, 0.88, and
0.84 from top to bottom, respectively. They correspond to the average values
of �DFA obtained from 5000 surrogate time-series that were generated with
the method of surrogate by Ma et al. �Ref. 72� �see the text�.
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FIG. 4. �Color online� The probabilities �a� p1, �b� p2, and �c� p3 to recog-
nize the signal of Fig. 1�a� as true SES activity when considering various
percentages of data loss p=0.2, 0.3, 0.5, 0.7, and 0.8 as a function of the
length L of the contiguous samples removed. The removal of large segments
leads to better results when using DFA in natural time �a�, whereas the
opposite holds when using the conditions of Eqs. �6� and �7� for 	1, S, and
S− �b�. The optimum selection �c� for the identification of a signal as SES
activity consists of a proper combination of the aforementioned procedures
in �a� and �b�, see the text. The values presented have been obtained from
5000 surrogate time-series �for a given value of p and L�, and hence they
have a plausible error of 1.4% ��1 /�5000�.
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sidering the case of 70% data loss �open squares in Fig. 4�a��
the probability p1 is close to 20% for L=50; it increases to
p1�30% for L=100 and finally stabilizes around 50% for
lengths L=300–500. This is essentially consistent with the
earlier findings of Ma et al.72 who noticed that removing the
same percentage of data using longer �and fewer� segments
has a lesser impact on the scaling behavior compared to re-
moving segments with a smaller average length.

Procedure 2: Investigation whether the quantities 	1, S,
and S− �which resulted from the analysis of a signal in natu-
ral time� obey the conditions �6� and �7�, i.e., 	1−0.070
�0.01 and S, S−�0.0966. If they do so, the signal is classi-
fied as SES activity. Figure 4�b� shows that for a given
amount of data loss, the probability p2 of achieving the sig-
nal identification as SES activity—that results after making
5000 attempts for each L value—gradually decreases when
moving from small to large scales. Note that for the smallest
length scale investigated, i.e., L=10 �which is more or less
comparable—if we consider the sampling frequency of 1
sample/s—with the average duration of �11 s of the tran-
sient pulses that constitute the signal�, the probability p2

reaches values close to 100% even for the extreme data loss
of 80%. This is understood in the context that the quantities
	1, S, and S− remain almost unaffected when randomly re-
moving segments with lengths comparable to the average
pulse’s duration. This is consistent with our earlier finding77

that the quantities 	1, S, and S− are experimentally stable
�Lesche’s stability�, meaning that they exhibit only slight
variations when deleting �due to experimental errors� a small
number of pulses. On the other hand, at large scales of L, p2

markedly decreases. This may be understood if we consider
that, at such scales, each segment of contiguous L samples
removed comprises on the average a considerable number of
pulses the removal of which may seriously affect the quan-
tities 	1, S, and S−. As an example, for 80% data loss �solid
squares in Fig. 4�b��, and for lengths L=400–500, the prob-
ability p2 of identifying a true SES activity is around 40%.

Interestingly, a closer inspection of Figs. 4�a� and 4�b�
reveals that p1 and p2 play complementary roles. In particu-
lar, at small scales of L, p1 increases but p2 decreases versus
L. At large scales, where p1 reaches �for considerable values
of data loss� its largest value, the p2 value becomes small.
Inspired from this complementary behavior of p1 and p2, we
proceeded to the investigation of a combined procedure:

Procedure 3: In this procedure, a signal is identified as
SES activity when either the condition 0.85��DFA�1.0 or
the relations �6� and �7� are satisfied. The probability p3 of
achieving such an identification, after making 5000 attempts
�for a given value of p and L�, is plotted in Fig. 4�c�. The
results are remarkable since, even at significant values of
data loss, e.g., p=70% or 80%, the probability p3 of identi-
fying a SES activity at scales L=100–400 remains relatively
high, i.e., p3�75% and 65%, respectively �cf. note also that
the value of p3 reaches values close to 100% at small scales
L=10�. This is important from practical point of view, be-
cause it states, for example, the following: even if the records
of a station are contaminated by considerable noise, say 70%
of the time of its operation, the remaining 30% of the non-
contaminated segments have a chance of 	75% to correctly

identify a SES activity. The chances increase considerably,
i.e., to p3�90%, if only half of the recordings are noisy.

The aforementioned results have been deduced from the
analysis of a SES activity lasting around 3 h. In cases of SES
activities with appreciably longer duration, e.g., a few to
several days47,87 detected in Greece or a few months in
Japan,74 the results should become appreciably better.

V. CONCLUSIONS

We start our conclusions by recalling that the distinction
between SES activities �critical dynamics, infinitely ranged
temporal correlations� and artificial �man-made� noise re-
mains an extremely difficult task, even without any data loss,
when solely focusing on the original time-series of electrical
records which are, of course, in conventional time. On the
other hand, when combining natural time with DFA analysis,
such a distinction becomes possible even after significant
data loss. In particular we showed for example that even
when randomly removing 50% of the data, we have a prob-
ability �p3� around 90%, or larger, to identify correctly a SES
activity. This probability becomes somewhat smaller, i.e.,
75%, when the data loss increases to 70%. To achieve this
goal, the proper procedure is the following: the signal is first
represented in natural time and then analyzed in order to
deduce the quantities 	1, S, and S− as well as the exponent
�DFA from the slope of the log-log plot of the DFA analysis
in natural time. We then examine whether the latter slope has
a value close to unity or the conditions 	1�0.070 and S,
S−�Su are obeyed. In other words, the consequences caused
by an undesirable severe data loss can be markedly reduced
upon taking advantage of the DFA and natural time analysis.
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