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RASE: A Real-Time Automatic Search Engine for
Anomalous Seismic Electric Signals

in Geoelectric Data
Jiyan Xue , Sihong Wu , Qinghua Huang , Li Zhao , Nicholas V. Sarlis , and Panayiotis A. Varotsos

Abstract— The geoelectric data contain important anomalous
information for short-term earthquake prediction. Timely and
accurate identification of seismic electric anomalies is important
for disaster prevention. However, identifying anomalies is chal-
lenging due to the huge volumes of data and noise disturbance.
In this study, we develop a real-time automatic search engine
(RASE) that incorporates an unsupervised convolutional denois-
ing network (UCN) module and a supervised LSTM prediction
network (SLN) module to automatically search for important
anomalous signals in real time. Experiments demonstrate that
the RASE provides excellent detection accuracy and efficiency for
synthetic and field data, which takes only dozens of seconds for
a common personal computer (PC) to provide accurate detection
results for data collected over a 24-h period. The RASE has
excellent flexibility and developability, as its internal modules can
be adapted by more suitable technologies for better performance
in various application scenarios. The comparison of multiple
module combinations shows that the RASE configured with
UCN and SLN has the highest detection accuracy. Our proposed
search engine can reduce the human labor required for complex
and repetitive detection work and fully realize the potential
of geoelectric field observation in earthquake monitoring and
disaster prevention.

Index Terms— Deep learning, multimodule integration, seismic
electric anomaly detection, seismo-electromagnetism.

I. INTRODUCTION

CONTINUOUS observation of various geophysical sig-
nals is of great importance for earthquake moni-

toring and disaster prevention [1]. Many pre-earthquake
geophysical anomalies have been reported, including seis-
micity [2], [3], [4], [5], [6], [7], as well as geoelec-
tric [8], [9], [10], [11] and geomagnetic [12], [13], [14] fields.
The geoelectric field data are sensitive to microscopic changes
in the seismogenic zone, and existing statistical evidence has
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shown that certain geoelectric field anomaly, the so-called
seismic electric signal (SES), correlates well with seismicity
before impending earthquakes [4], [15]. Therefore, geoelectric
field monitoring networks are widely deployed in seismically
active areas to monitor precursor SESs [16]. Although the
physical mechanism of anomalous SES generation is still
controversial [17], [18], [19], [20], [21], [22], timely and
accurate extraction of SESs from observations is necessary
for monitoring the seismogenic processes so that geoelectric
observation may be employed in disaster mitigation [1], [10].

Technicians generally distinguish abnormal SESs from
the normal geoelectric field by waveform characteris-
tic, time–frequency analysis, and natural time analy-
sis [4], [23], [24], [25], [26], [27]. However, due to the wide
distribution of geoelectric observation networks and the high
sampling frequency, manual analysis of massive datasets is
extremely tedious and time-consuming. Moreover, the pres-
ence of noise also makes it difficult to fully explore the
embedded effective SESs, resulting in the loss of valuable
information [28], [29]. Therefore, it is crucial to develop
automatic and effective anomaly search techniques to reduce
the tedious and repetitive manual labor and improve the
timeliness and utilization of data.

Data-driven deep learning-based algorithms can extract
more generalized high-level features in the data with powerful
characterization capability [30]. In addition, a well-trained
network can be directly applied to newly acquired data to
meet the real-time requirement of anomaly detection [31].
Therefore, deep learning has been used for anomaly detection
in many different disciplines, including medicine, transporta-
tion, computer network, aerospace, and many other fields
with excellent performance [32], [33], [34], [35], [36], [37].
However, geoelectric field data are more susceptible to noise
pollution generated by multiple unknown sources. So far,
to our knowledge, only one automatic anomaly detection
algorithm based on deep learning has been proposed by
Kanarachos et al. [38], which combines wavelet and Hilbert
transform with a fully connected network. However, it is
difficult to replace the wavelet denoising in their algorithm by
more advanced methods, and the input of their fully connected
network is restricted to be multilevel decomposed data with
simple features, which not only affects the configurability and
scalability but also limits the detection performance of this
algorithm.

1558-0644 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Athens. Downloaded on March 31,2023 at 08:13:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9588-9804
https://orcid.org/0000-0002-5584-664X
https://orcid.org/0000-0002-1923-3002
https://orcid.org/0000-0002-0950-6863
https://orcid.org/0000-0002-8483-519X
https://orcid.org/0000-0001-6983-3420


5905911 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Considering that the geoelectric field data are typical time
series with obvious periodic characteristics [39], we adopt
the long short-term memory (LSTM) network in the geo-
electric field anomaly detection, which uses gate functions
and tuple states to analyze the temporal information in the
input data [40], [41] and is particularly effective in time series
analysis [28], [29], [42], [43].

The irregular random noise in the raw geoelectric field
data can seriously impede the detection of hidden SESs.
In recent decades, various random noise distribution theories
and denoising methods have been developed and applied in
practice. These include signal decomposition that uses empir-
ical modal decomposition (EMD) and principal component
analysis [44], [45], [46]; sparse transform based on wavelet
transformation [47]; and rank reduction by singular spectrum
analysis (SSA) [48], [49]. However, most conventional denois-
ing algorithms rely on careful tuning of empirical parameters
to achieve satisfactory performance and lack sufficient flexi-
bility to ensure accuracy in practical applications. Moreover,
the efficiency of searching for anomalous SESs is consid-
erably limited. Recently, deep learning-based unsupervised
algorithms have shown great promise for suppressing random
noise in seismic signals, which can quickly yield results with
higher signal-to-noise ratios (SNRs) and fidelities without
elaborate parameter tuning [50], [51], [52].

In this study, we propose a real-time automatic search
engine (RASE) that incorporates an unsupervised convolu-
tional denoising network (UCN) module and a supervised
LSTM prediction network (SLN) module. We demonstrate the
remarkable detection accuracy and efficiency of the RASE
by both synthetic and field data using the receiver operating
characteristic (ROC) analysis [53], [54] (see the Appendix
for details). In addition, the RASE has excellent developa-
bility, with internal modules easily replaced or combined to
achieve the best performance according to diverse require-
ments. A comparison of multiple module combinations shows
that the RASE configured with UCN and SLN has the highest
detection accuracy. Our proposed RASE can be applied to
SES detection tasks and provide real-time and accurate search
results from massive geoelectric observation data.

II. DATA

We examine the effectiveness of the RASE using both
synthetic data with artificial anomalous SESs and field data
with manually detected real SESs. In the former case, we gen-
erate synthetic data by randomly embedding simulated SESs
into anomaly-free background geoelectric data. For the back-
ground data, we collect a 60-d anomaly-free record starting
from 1 January 1999 with a high SNR and a default sam-
pling frequency of 0.1 Hz from station Niijima deployed by
Rikagaku Kenkyusho (RIKEN) on an uninhabited island in
the Izu Islands, Japan [39]. We add Gaussian and impulsive
noises to the background data to simulate a strong noise
environment and then divide the data into training, validation,
and test sets by the ratio of 9:0.5:0.5 along the time axis.
Based on the accumulated observations so far, anomalous
SESs are approximately characterized by rectangular-shaped

Fig. 1. Synthetic and field test data. (a) Artificial embedded anomalous
SESs contained in synthetic test data shown by red lines. (b) Real anomalous
SESs between 15:34 and 17:31 on 17 March 2001 (Day 29 in the selected
duration) recorded at station VOL determined by experts. The real anomalous
SESs consist of multiple approximately rectangular-shaped signals lasting a
few minutes shown by red lines.

waveforms in the time domain, with durations ranging from
a few minutes to several hours and amplitudes usually on the
order of a few millivolts per kilometer above the background
value [10], [15], [23], [29], [55]. Therefore, we randomly
embed ten anomalous SESs with amplitudes of about 3 mV/km
and durations of about 10 min into the test set [see Fig. 1(a)].
Binary labels (see the Appendix) are used to mark the anoma-
lous SESs for quantitative evaluation.

The field data with real anomalous SESs are collected
from the Volos (VOL) station deployed in an SES sensitive
area of Volos in Greece with the default sampling rate of
0.1 Hz [56]. On 17 March 2001, station VOL recorded a
strong anomalous disturbance for about 2 h, consisting of
multiple near-rectangular-shaped signals [see Fig. 1(b)]. This
anomaly was meticulously analyzed and determined as the
SESs of the 26 July 2001 Aegean Sea M6.5 earthquake [56].
We demonstrate the RASE’s performance using the 29-d
record from 19 February to 17 March 2001. The data on 17
March are used as the test set, and the previous 28-d data are
divided into training and validation sets by the ratio of 9:1.

III. METHOD

A. Structure of RASE

The entire data flow of the RASE is shown in Fig. 2(a).
The RASE is composed of two critical modules [see
Fig. 2(b) and (c)], with the overall aim of searching for
anomalous SESs in the massive input observational data.
The geoelectric field data are often contaminated with strong
irregular noises that limit the ability of SLN to learn the
hidden features in the data and interfere with the extraction
of useful SESs. Therefore, the RASE employs a UCN module
to suppress the noises and improve the signal quality. Subse-
quently, an SLN is trained to learn the target-relevant features
of the UCN-denoised geoelectric field data to iteratively pre-
dict the data for the next sampling point. For data without
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Fig. 2. Framework of the RASE. (a) Internal flowchart and main functional modules. Modules with red backgrounds indicate parts that must be trained
prior to application for each station. (b) UCN. The numbers of convolution kernel channels are given below the convolution layers. (c) SLN. The black and
red texts indicate the input and output of the network in FR and TF training modes, respectively.

anomalous SESs, the well-trained SLN can provide accurate
predictions with small errors between the predicted results
and the denoised data. However, for data with anomalous
SESs, the errors between the SLN-predicted results and the
denoised data can be particularly large during the periods of
SES occurrences. The RASE then uses the Hilbert transform to
calculate the error envelopes (detection results) and determine
the periods of anomalous SES occurrences. The amplitudes
of the error envelopes represent the probability scores of
the anomalies. A larger score indicates a higher probability
of SES occurrence. A specific threshold value ST needs to
be determined as the criterion for the occurrence of SES.
Data in the period in which the probability score exceeds
the specified threshold are considered to be abnormal SESs
or normal otherwise. Furthermore, to quantitatively evaluate
the anomaly detection performance of the RASE, we invoke
the ROC analysis based on the manually labeled results. The
area under the ROC curve is used to investigate the effect of
threshold selection on detection accuracy.

B. UCN Module

The UCN module [see Fig. 2(b)] can suppress irregular
random noises in the raw data and improve the quality of

the training data for the subsequent SLN module and is
thus helpful for the SLN to effectively extract the hidden
features. The UCN automatically discards irregular noises by
their random and unpredictable characteristics and reconstructs
the regular and learnable features of the signal. Besides,
the UCN can perform the denoising task without label
constraints [57].

The whole network adopts an encoder–decoder struc-
ture [58] with convolutional, maximum pooling, and
upsampling layers to compress and reconstruct the data.
Batch normalization is introduced between adjacent net-
work layers to avoid vanishing gradients and internal covari-
ance shifts [59]. In the training phase, the UCN’s input
and output are the same noisy data, typical of unsuper-
vised training. The loss function LUCN is the root-mean-
square error (RMSE) between the input x I and output
data xO

LUCN(WUCN, bUCN) =

√
1
m

[∑m

i=1

(
x I

i − x O
i

)2
]

(1)

where WUCN and bUCN represent the weighting matrices and
bias vectors in the UCN, respectively, x I

i and x O
i are the

elements of the input x I and output data xO , respectively, and
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m is the number of sampling points in the input data (m =

8640, for daily data).

C. SLN Module

The SLN [see Fig. 2(c)] consists of a fully connected
encoding layer, a three-layer stacked LSTM network, and a
fully connected decoding layer. It predicts the output data at
the nth time sample based on the first n− 1 samples in the
input data and recursively predicts backward. The loss function
of the SLN training consists of three components.

In the free-running (FR) mode [60], [61], the input data are
encoded by the fully connected layer. The encoded data at the
first sample point x0e are input to the stacked LSTM network
to predict the data at the next sample point x̂1e and then
continue recursively backward [x̂2e, . . . , x̂ (n−1)e]. Finally, the
fully connected decoding layer outputs the prediction results
[xFR

1 , xFR
2 , . . . , xFR

n ]. The first loss function LSLN−FR is the
RMSE between the SLN-predicted results and the labels in
the FR mode

LSLN−FR(WSLN, bSLN) =

√
1
n

[∑n

i=1

(
xFR

i − xi
)2

]
(2)

where WSLN and bSLN represent the weighting matrices and
bias vectors in the SLN, respectively, and n is the number of
sampling points (n = 100).

Since there are cumulative prediction errors in the FR mode,
which impedes the loss function from stable convergence,
we add a second loss function. In the teacher forcing (TF)
model [61], we use the encoded data [x1e, x2e, . . . , x(n−1)e]

instead of the output data from the stacked LSTM layers
[x̂1e, x̂2e, . . . , x̂ (n−1)e] for subsequent prediction and decode
it to get the prediction result [xTF

1 , xTF
2 , . . . , xTF

n ]. The second
loss function LSLN−TF is

LSLN−TF(WLRN, bLRN) =

√
1
n

[∑n

i=1

(
xTF

i − xi
)2

]
(3)

where the parameters have the same meaning as those in (2).
In addition, considering that the hidden layer states should be
consistent in the FR and TF modes if there is no cumulative
error, we define a third loss function LSLN−PF by the RMSE
of the LSTM states between the two modes [professor forcing
(PF)] [62]

LSLN−PF(WLRN, bLRN) =

√
1
n

[∑K

j=1

∑n−1

i=0
h j ′

i − h j
i

]
(4)

where K is the number of the LSTM stacking layers (K = 3)
and h j

i and h j ′

i are the LSTM states at the i th time step of the
j th layer in the FR and TF modes, respectively. Ultimately, the
loss function LSLN of SLN is the sum of three loss functions

LSLN = LSLN−FR + LSLN−TF + LSLN−PF. (5)

D. Implementation

We use the Adam optimizer [63] to implement the RASE
training. For UCN and SLN, the learning rates are 10−3 and
10−4 and the decay rates are 10−4 and 10−5, respectively. The
open-source library Pytorch supports all the aforementioned

Fig. 3. Denoising result. Comparison between the synthetic data (gray) and
denoising result (black) by the unsupervised convolution denoising network
in the test set.

Fig. 4. Training of the supervised LSTM prediction network. Decrease of the
loss functions of the training (black) and validation (red) sets with training
epoch. One epoch indicates that the entire training and validation datasets
are fed into the network to complete the calculation of the loss function and
update the network parameters once. The blue solid dot indicates the location
of the 128th epoch when the network achieves the best performance on the
validation set.

Fig. 5. Quality monitoring of the supervised LSTM prediction network.
(a) Black solid and red dashed lines show the denoised data in the validation
set and prediction result by the well-trained network, respectively. (b) Relative
error between the denoised data and prediction result in (a).

deep learning concepts and optimization algorithms. All com-
putations are carried out on a desktop personal computer (PC)
equipped with an NVIDIA GeForce RTX 3070 GPU and an
AMD Ryzen 7 3700X CPU with 16-GB memory. The RASE
training takes about 2.73 and 2.42 h in the synthetic and field
cases, respectively.
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Fig. 6. Detection results using synthetic and field data. (a) Validation set for synthetic data. (b) Test set for synthetic data. (c) Validation set for field data.
(d) Test set for field data. The black, green, red, and blue dotted lines show the original observations, manual binary labels of the SESs, detection results, and
optimal thresholds determined by the ROC analysis, respectively.

IV. RESULTS

A. Synthetic Data

After the denoising process by UCN, the noise is suc-
cessfully suppressed and the anomalous SESs are effectively
retained (see Fig. 3). The denoised data are then used to train
the downstream SLN of the RASE and the corresponding
loss functions of both the training and test sets are monitored
during the training process (see Fig. 4). The well-trained SLN
is first examined by the validation dataset without anomalies.
The prediction result shows good agreement with the denoised
data with relative errors of less than 0.6% (see Fig. 5),
indicating that the SLN is well-trained and has excellent
prediction capability.

Fig. 6(a) and (b) shows the detection results of the RASE on
the validation and test sets of the synthetic data. The detection
result of the test set matches well with the manual binary
labels. According to the ROC analysis of the test set [see
Fig. 7(a)], when the optimal threshold (TH) is set to 0.18, the
false positive rate (FPR) is 7.3%, the true positive rate (TPR)
is 91.7%, and the area under the curve (AUC) reaches 0.963
(outstanding, see the Appendix for the classification criteria
of AUC). Moreover, there are no false identification results
on the validation set, as the anomaly score of each sampling
point is always smaller than the selected threshold.

B. Field Data

Fig. 6(c) and (d) shows the anomaly detection results for
the validation and test sets of the field data. The ROC analysis

[see Fig. 7(b)] suggests that when the TH is 0.14, the FPR
is 9.0%, the TPR is 95.7%, and the AUC reaches 0.975
(outstanding). The anomaly scores of the validation set are all
well below the optimal threshold. In addition, the well-trained
RASE takes only 31 s to complete anomaly detection for the
24-h continuous record, which can fully support the real-time
detection requirement.

Results for both the synthetic and field data demonstrate that
the RASE can accurately detect anomalous periods in real time
and has the ability to fully extract effective information in a
strong noise environment.

V. DISCUSSION

A. Length of the Training Set

Different lengths of the training set can often affect
the detection accuracy. Unfortunately, to the best of our
knowledge, there is no heuristic principle for choos-
ing such a hyperparameter. Therefore, we examine the
RASE’s detection accuracy on the test set of the syn-
thetic data by varying the lengths of the training set (see
Fig. 8 and Table I).

The ROC curves largely overlap as the training set grows
from 26 to 54 d, indicating that a significant increase in the
training set length does not significantly improve the detection
accuracy. However, an increase in the length of the training set
will necessarily increase the training time. Therefore, we can
choose the training set length to balance the training time and
accuracy.
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Fig. 7. ROC analyses of the anomaly detection results. (a) Synthetic data.
(b) Field data. The red dots show the optimal operation points with threshold
ST (=TH) selected based on the ROC analyses, representing that the RASE
with the corresponding threshold achieves the best detection results on the
test set.

Fig. 8. Comparison of ROC analyses for different lengths of the training
set. The red, blue, black, and green lines are the ROC curves of the RASE
detection performances on the test set when the lengths of the training sets
are 54, 40, 26, and 21 d, respectively.

With the training set length increasing from 21 to 26 d, the
AUC grows from 0.938 to 0.951, indicating an “outstanding
[AUC ∈ [0.95,1)]” detection performance according to the
classification criteria of AUC in the Appendix. Therefore,

Fig. 9. Comparison of denoising performances of EMD, SSA, and UCN.
(a) Denoising results of the three algorithms on the synthetic data. The gray,
green, blue, black, and red lines indicate the noise-added data, noise-free
data, and the EMD-, SSA-, and UCN-denoised results, respectively. (b) Error
analyses of the denoising results by EMD (blue), SSA (black), and UCN (red).
The errors are defined as the differences between the denoised and noise-free
data, indicating the fidelities of the denoised signals. The quantitative results
of the SNRs and errors of the three algorithms are listed in Table II.

TABLE I
EFFECT OF DIFFERENT LENGTHS OF THE TRAINING SET ON

DETECTION PERFORMANCE

we recommend choosing a training set length of 26 d to enable
RASE to achieve “outstanding” detection performance with
the lowest training cost.

B. Comparison With Different Denoising Modules

The UCN algorithm has shown excellent denoising per-
formance in seismic exploration [50], [51], [52]. However,
for geoelectric field data, the UCN algorithm has not been
compared with other conventional denoising algorithms. Here,
we compare UCN with the EMD [45] and SSA [48] in terms
of SNR and fidelity measures.

To facilitate the quantitative comparison of the denoising
results, in this section, we incorporate in the first 54-d synthetic
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Fig. 10. Comparison of the UCN, SSA, and EMD denoising algorithms. (a) SNRs of the five noisy environments. (b) Fidelities in the five noisy environments.
(c) and (d) ROC analyses of the three denoising algorithms on the synthetic and field data, respectively. The red, black, and blue lines represent the indicator
values of denoising results [in (a) and (b)] and correlations between the true and FPRs [in (c) and (d)] obtained by the UCN, SSA, and EMD algorithms,
respectively. The cyan line in (a) indicates the SNRs of the synthetic data contaminated by noises of the five different levels distributed between 0 and 15 dB.

data used the periodic tidal responses with anomalous SESs
(considered as the noise-free data to be recovered), as well
as interfering Gaussian and random impulsive noises [28].
We randomly select 1-d synthetic data for comparison and
presentation. The denoising results [see Fig. 9(a)] and the cor-
responding errors [see Fig. 9(b)] suggest that the UCN algo-
rithm achieves the best denoising performance with the highest
fidelity for anomalous SESs among the three approaches.
In addition, we calculate the average error at each sampling
point to further compare the fidelity (see Table II). The
quantitative comparison demonstrates that the UCN algorithm
can obtain the best denoising effect with minimal signal
impairment.

We also compare the robustness of the three denoising algo-
rithms by adding into the synthetic data mixtures of Gaussian
and random impulsive noises of five different levels of SNRs
ranging between 0 and 15 dB. Fig. 10(a) and (b) shows the
SNRs and fidelities, respectively, of the denoised signals using
EMD, SSA, and UCN algorithms. Under various levels of
noise interference, the UCN algorithm always achieves the
greatest SNR and fidelity in the denoised signal compared to
the other two conventional algorithms, demonstrating higher
denoising robustness. In addition, the EMD and SSA require

fine parameter tuning for different noise levels to achieve the
optimal denoising effect shown in Fig. 10(a) and (b), while the
UCN needs less human intervention and is thus more suitable
for practical scenarios with massive geoelectric field data.

In addition, we compare the impact of the EMD, SSA,
and UCN denoising modules on the detection accuracy of the
RASE. We use the same data and training strategy to ensure a
fair comparison by the ROC analysis [see Fig. 10(c) and (d)
and Tables III and IV]. Statistical results show that the UCN
algorithm can significantly improve the RASE’s detection
performance compared to conventional denoising algorithms.
Therefore, the RASE equipped with the UCN algorithm has
the best detection robustness and stability, with the ROC anal-
ysis showing that its detection results are always outstanding
(AUC > 0.95) in both synthetic and field cases.

C. Comparison With Different Prediction Modules

In this section, we further investigate the impact of dif-
ferent prediction modules on the detection accuracy, aiming
to find an optimal combination of modules that allows the
RASE to achieve the best detection performance. We design
a supervised recurrent neural network-based network (SRN),
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TABLE II
COMPARISON OF SNR AND FIDELITIES OF EMD, SSA, AND UCN

TABLE III
EFFECT OF DIFFERENT DENOISING MODULES ON THE DETECTION

PERFORMANCE OF THE SYNTHETIC DATA

TABLE IV
EFFECT OF DIFFERENT DENOISING MODULES ON THE DETECTION

PERFORMANCE OF THE FIELD DATA

TABLE V
EFFECT OF DIFFERENT PREDICTION MODULES ON THE DETECTION

PERFORMANCE OF THE SYNTHETIC DATA

TABLE VI
EFFECT OF DIFFERENT PREDICTION MODULES ON THE DETECTION

PERFORMANCE OF THE FIELD DATA

see [64], and a supervised gated recurrent unit-based network
(SGN), see [65], and compare them with the current SLN in
the RASE using the same UCN algorithm as the denoising
module and the same data and training strategy.

Results of the synthetic and field data (see Fig. 11 and
Tables V and VI) both suggest that the SLN-based RASE
has the largest AUC, with TPR consistently higher than the
other two algorithms, indicating that the RASE can provide
the most accurate detection results. Combining the results of

Fig. 11. Comparison of the three prediction modules. ROC analyses of the
three prediction modules on (a) synthetic and (b) field data. The red, black,
and blue lines represent the correlations between the true and FPRs obtained
by the RASEs with prediction modules implemented by the three networks
SLN, SGN, and SRN, respectively.

those in Figs. 10 and 11, the RASE based on the combination
of UCN and SLN modules has the best detection accuracy in
both synthetic and field data applications.

D. Future Developments

In the RASE, the manually set threshold ST for the prob-
ability score defined in Section II-A is an important criterion
for classifying anomalous SESs. A larger threshold value rep-
resents a more restrictive condition for identifying anomalies,
leading to higher chances of missing anomalies but fewer false
alarms. Therefore, the threshold should balance missed and
false alarms so that they can be optimized simultaneously.
According to the experimental results, the optimal threshold
is generally between 0.1 and 0.2, which can be used as a
reference for the subsequent threshold selection.

In addition, the denoising and prediction modules in the
RASE can be easily adapted and reconstructed for different
practical scenarios or replaced by better techniques. The
current comparative experimental results demonstrate that our
proposed RASE has excellent robustness and detection per-
formance in noisy environments without elaborate parameter
tuning. Moreover, the detection performance of the RASE
can be further improved by incorporating better denoising and
prediction modules developed in the future.
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TABLE VII
CLASSIFICATION RESULTS OF THE ROC ANALYSIS

VI. CONCLUSION

In this study, we have developed the RASE, a RASE
for geoelectric field anomaly detection, which combines an
unsupervised convolutional network for predenoising and a
supervised LSTM prediction network for detecting anomalous
SESs. Experiments using the synthetic and real anomalous
SESs demonstrate that the RASE provides excellent detection
accuracy and efficiency. Comparison with several denoising
and prediction algorithms shows that the UCN algorithm has
the best denoising robustness without elaborate parameter
tuning, and the combination of UCN and SLN delivers opti-
mal detection performance. Our proposed RASE can support
the need for real-time automatic anomaly search in massive
geoelectric field data in the future.

APPENDIX

We use the ROC analysis [53], [54] to quantitatively evalu-
ate the detection performance of the RASE. The binary repre-
sentation of the SESs is a two-value time series: 1 indicates an
anomaly when the SES exists at time t , whereas 0 indicates no
anomaly [12], [24]. According to the RASE’s detection result,
the time is marked as 1 if the detection score S is greater than
a manually set threshold value ST or 0 otherwise.

We use the ROC analysis to compare the RASE’s detection
results with manual SES labels and classify the detection
results into four categories (see Table VII): true positive (TP),
false negative (FN), false positive (FP), and true negative (TN).
The TPR and FPR are calculated based on the aforementioned
classification results

TPR =
TP

TP+FN (A-1)

FPR =
FP

FP+TN . (A-2)

The ROC curve illustrates the relationship between the FPR
(x-axis) and TPR (y-axis), and the area under the ROC curve
quantifies the detection accuracy. In this study, referring to
the classification criteria of Sarlis et al. [66], we classify the
performance of the RASE by the AUC as: “invalid” [AUC ∈

[0, 0.5)], “poor” [AUC ∈ [0.5–0.7)], “acceptable” [AUC ∈

[0.7–0.8)], “excellent” [AUC ∈ [0.8–0.95)], “outstanding”
[AUC ∈ [0.95, 1)], and “perfect” (AUC = 1). According
to the ROC curve, we can determine the optimal threshold
that maximizes the difference between the TPR and FPR.
In addition, the FPR focuses only on the anomalous samples,
while the TPR focuses only on the no anomaly samples so
that the ROC is suitable for geoelectric field data even with
an unbalanced proportion of positive and negative samples.
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