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a b s t r a c t

Applying natural time analysis (NTA) to the Japanese seismic data, we have found that
the system enters the critical stage upon the occurrence of M=4.2-5.0 earthquakes from
08:36 to 13:14 local time (LT) on 10 March 2011, i.e., almost one day before the M9
Tohoku earthquake on 11 March 2011. In addition, here, we find that just after this
period the entropy change ∆S under time reversal of NTA along with the Tsallis entropy
of non-extensive statistical mechanics (NESM) show distinct simultaneous changes. This
simultaneous appearance enables the shortening of the time window of the impending
mainshock to several hours. Furthermore, upon the occurrence of the M7.3 foreshock
at 11:45 LT on 9 March 2011, the following fact emerged: The Tsallis entropy of NESM
exhibited a scaling behavior with a characteristic exponent 1/3 that conforms to Lifshitz–
Slyozov–Wagner theory for phase transitions as had been also observed in NTA for the
fluctuations of the entropy change ∆S under time reversal upon a M7.8 earthquake
occurrence in Japan on 22 December 2010. The latter obeyed the form A(t − t0)c where
c is approximately equal to 1/3 and the pre-factors A are proportional to the scale i
(number of events) while t0 is almost 0.2 days after this M7.8 earthquake.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Earthquake (EQ)1 occurrences exhibit complex correlations in time, space and magnitude (e.g., [1–6]). It is widely
accepted [7–9] that the observed EQ scaling laws [10] indicate the existence of phenomena closely associated with the
proximity of the system to a critical point. To analyze complex time series, among which seismicity is just an example,
natural time analysis (NTA) was introduced in the beginning of 2000s (e.g., see Ref. [11–13] and references therein) which
enables recognition of when the system enters the critical stage [9,14]. After this recognition, it has been found in the
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case of seismicity that the mainshock (critical point) occurs a few days to around one week later [14]. It is the objective
of the present work to shorten this time window of one week or so, aiming to identify more accurately the occurrence
time of the mainshock (within a day or around several hours). To achieve this goal in the case of the Tohoku mega-EQ
that occurred on 11 March 2011, we also employ entropic measures and in particular the entropy change ∆S in NTA
nder time reversal as well as the Tsallis entropy (see below). NTA has found applications in diverse fields compiled in
ef. [9] and is currently considered as the basis for a new procedure to estimate the seismic risk by Turcotte, Rundle
nd coworkers [15–18] termed earthquake nowcasting. NTA will be shortly presented in the next Section together with
n application on how this analysis can serve for the estimation of the occurrence time of an impending mainshock. In
ection 3 the data and the analysis are presented and our results are given in Section 4. Finally, in Section 5, we summarize
ur main conclusions.
Non-extensive statistical mechanics (NESM) [19], pioneered by Tsallis [20,21], provides a framework for the study

f complex systems in their non-equilibrium stationary states, as well as in systems with (multi)fractal and self-similar
tructures, long-range interacting systems etc., resulting in power-law asymptotic behavior frequently observed in nature.
t is a generalization of the classical statistical theory of Boltzmann and Gibbs and the involved entropy is a mono-
arametrical function of the probability distribution. The entropic parameter q is incorporated in the expression of Tsallis
ntropy, Sq, given by

Sq =
kB

q − 1

(
1 −

∞∑
i=1

pqi

)
(1)

in terms of the probability distribution, and can attain any value, while for q → 1, recovers the Boltzmanian entropy and
the Boltzmann–Gibbs statistical mechanics (cf. kB stands for the Boltzmann constant).

Tsallis [19] outlined various disadvantages of Boltzmann–Gibbs entropy (SBG) and proposed the aforementioned
definition of non-additive entropy. Tsallis entropy satisfies:

Sq(A + B)
kB

=
Sq(A)
kB

+
Sq(B)
kB

+ (1 − q)
Sq(A)
kB

Sq(B)
kB

, (2)

where A and B are two different systems and the concepts of superextensivity, extensivity, and subextensivity correspond
to q < 1, q = 1, and q > 1, respectively (see also below on this point). We strongly recommend to the reader to go through
the recent paper by Tsallis – see Ref. [22] – which removes a lot of misunderstandings that led to an unjustified criticism
of NESM. For example, concerning the point ‘‘Additivity versus Extensivity’’, Tsallis [22] explained that some people do not
distinguish – clearly enough, and even at all – the concepts of ‘‘extensivity’’ and ‘‘additivity’’, applicable to both entropy and
energy. This is quite unfortunate since this distinction ought to be made in any introductory talk on the subject. Indeed, it
plays a foundational role in non-extensive statistical mechanics. Let us address now these two important notions, focusing
specifically on entropic additivity and entropic extensivity. Following Penrose [23], an entropic functional S({pi}) is said
‘additive’’ if, for two probabilistically independent systems A and B (i.e., pA+B

ij = pAi p
B
j ), one verifies S(A + B) = S(A) + S(B),

in other words, if

S({pAi p
B
j }) = S({pAi }) + S({pBj }) (3)

is verified. Otherwise, S({pi}) is said ‘‘nonadditive’’. It immediately follows that SBG = −kB
∑N

i=1 pi ln pi is additive. In
contrast, Sq satisfies Eq. (2), and hence

Sq(A + B) = Sq(A) + Sq(B) +
1 − q
kB

Sq(A)Sq(B). (4)

Therefore, unless (1 − q)/kB → 0, Sq is nonadditive. Let us now address the other important entropic concept, namely,
xtensivity. An entropy S(N) is said ‘‘extensive’’ if a specific entropic functional is applied to a specific class of many-body
ystems with N = Ld particles, where L is its dimensionless linear size and d its spatial dimension, and satisfies the
hermodynamical expectation

0 < lim
N→∞

S(N)
N

< ∞, (5)

hence, S(N) ∝ N for N ≫ 1. Therefore, entropic additivity only depends on the entropic functional, whereas entropic
extensivity depends on both the chosen entropic functional and the system itself (i.e., its constituents and the correlations
among them). To illustrate this fundamental distinction Tsallis presented four (see Fig. 1 of Ref. [22]), among infinitely
many, equal-probability typical examples of W (N) (N → ∞), where W is the total number of possibilities whose
probability does not vanish. Note also that recently the fundamental concept of entropy defect [24,25] has been introduced
to account for the non-additivity of Tsallis entropy.

NESM is the background of kappa distributions, the theory of which shows that the kappa and the entropic q indices are
connected through κ = 1/(q−1) [26,27]. It has found application [28–35] in the physics of earthquakes and especially in
the description of the asperities in the faults on which earthquakes occur. In particular, Sotolongo-Costa and Posadas [28]
proposed a model for EQ dynamics related to the Tsallis nonextensivity framework: It consists basically of two rough
2
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profiles interacting via fragments filling the gap between them (cf. the fragments were earlier produced by breakage of
the plates). In this model, the released seismic energy ϵ is related to the size of the fragments that fill the space between
fault blocks. Silva et al. [29] slightly revised the fragment–asperity model using a volumetric relationship between seismic
energy and fragment size instead of a linear one, in accordance with the standard theory of seismic moment scaling with
rupture length [36]. Subsequently, Darooneh and Mehri [37] and Telesca [38,39] further refined the fragment–asperity
model by introducing a function between EQ magnitude (M) and relative energy (ϵ) released as follows [40]:

M ∝
2
3
log10(ϵ) (6)

These studies finally lead [41] to a generalized Gutenberg–Richter (GR) relationship which results in

b = 2
(
2 − q
q − 1

)
(7)

for the b-value of the conventional GR law [42] (cf. the latter states that the number N(> M) of EQs above a certain
magnitude M in a given area and for a given time period scales as N(> M) ∝ 10−bM ), where the q values obtained from
different regions of the world [41] are all q ≈ 1.5−1.7. In a very recent work [43], Posadas and Sotolongo-Costa obtained
the relation:

Sq =
1 −

∫
∞

0 pq(σ )dσ
q − 1

=
1 − (2 − q)

1
2−q

q − 1
(8)

This equation allows us to find the value of the entropy for a dataset and to study its behavior as a function of the non-
extensivity q parameter; therefore, if a windowing process is carried out (i.e., choosing a certain number i of earthquakes
nd sliding the window in time), it is possible to visualize the dynamic evolution of the seismic series in terms of the
on-additive entropy.

. Background of natural time analysis and the estimation of the occurrence time of an impending mainshock

For a series of N events, which actually is a temporal point pattern, see, e.g., Ref. [44], we define as natural time χk
or the occurrence of the kth event the quantity χk = k/N [11–13]. In doing so, we ignore the time intervals between
consecutive events, but preserve their order and energy Qk. NTA is carried out by studying the evolution of the pair
(χk, pk), where the quantity pk = Qk/

∑N
n=1 Qn is the normalized energy for the kth event, and using the normalized

power spectrum Π (ω) ≡ |Φ(ω)|2 (cf. ω stands for the angular natural frequency) defined by Φ(ω) =
∑N

k=1 pk exp(iωχk).
Φ(ω) is the characteristic function of pk for all ω ∈ R, since pk can be regarded as a probability for the occurrence of the
kth event at χk. In NTA, the behavior of Φ(ω) is studied at ω → 0, because all the moments of the distribution of pk can
be estimated from the derivatives dmΦ(ω)/dωm (for m positive integer) of the characteristic function Φ(ω) at ω → 0. For
this purpose, a quantity κ1 was defined from the Taylor expansion Π (ω) = 1 − κ1ω

2
+ κ2ω

4
+ · · · where

κ1 = ⟨χ2
⟩ − ⟨χ⟩

2
=

N∑
k=1

pk(χk)2 −

(
N∑

k=1

pkχk

)2

. (9)

The quantity κ1 becomes equal to 0.070 at the critical state for a variety of dynamical systems [9,14,45–47]. In general,
this quantity is useful in identifying the approach to a critical point. In NTA of the seismicity, a careful inspection
reveals [48] that the quantity κ1 may be considered as an order parameter of seismicity, see also Refs. [49,50].

In the 1980s, a criticality physical model [51] inspired the study of transient electric signals before major EQs [52]. A
series of such transient changes of the Earth’s electric field are termed Seismic Electric Signals (SES) activities [53], the
study of the physical properties of which reveals the magnitude and the epicentral area of an impending EQ.

In 2001, the identification of the occurrence time of the impending mainshock was made as follows [11]: Just after a SES
activity initiation, we form time series of seismic events in natural time for the area that constitutes the selectivity [52,53]
map (of the geoelectrical station that recorded the SES activity) each time a small EQ of energy Qk occurs, in other words,
when the number of the events increases by one. The κ1 value for each time series is computed for the pairs (χk, pk) by
considering that χk is ‘‘rescaled’’ to χk = k/(N +1) together with rescaling pk = Qk/

∑N+1
n=1 Qn upon the occurrence of any

additional event in the area. When we followed this procedure, it was found empirically that the values of κ1 converge
to 0.070 usually a few days before mainshocks. Thus, by using the date of convergence to 0.070 for prediction, the lead
times, which were a few months to a few weeks or so by SES data alone, were made, although empirically, as short as
a few days [54–56] up to maximum of 11 days or so (cf. a theoretical explanation of the convergence κ1 = 0.070 for
prediction has been later achieved [14]). For example, the prominent seismic swarm activity in 2000 in the Izu Island
region, Japan, was preceded by a pronounced SES activity 2 months before and the approach of κ1 to 0.070 was found a
few days before the swarm onset [57].

However, when SES data are not available, which is usually the case, it is not possible to follow the above procedure.
This is so because neither the initiation time of the SES activity, nor the candidate area (i.e., the SES selectivity map) will
be available. However, both these difficulties will be overcome as follows: In particular, we showed -see below- that the
3
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initiation of a SES activity is almost simultaneous with the minimum [58] of the fluctuations of the order parameter of
seismicity κ1, hence the latter can serve for the information of the former. Furthermore, we have found [59] that the
epicenter of an impending major EQ can be estimated by means of the study of the spatiotemporal variations of the order
parameter of seismicity, hence the second difficulty can also be overcome (see also the schematic diagram in Ref. [60]).
As an example to overcome both these difficulties we have presented [61] the case of the identification of the occurrence
time of the impending M9 Tohoku mega-EQ that occurred on 11 March 2011 in Japan. Note that an alternative procedure
or the identification of the occurrence time of the Tohoku M9 EQ in 2011, has been presented in Ref. [62] by employing
he fluctuations of the seismicity entropy change under time reversal quantified by a complexity measure (Λi) defined
elow.
The entropy S in natural time (which is a dynamic entropy and not a static, e.g., Shannon entropy [63–65]) defined in

ef. [66] is

S = ⟨χ lnχ⟩ − ⟨χ⟩ ln⟨χ⟩, (10)

here ⟨f (χ )⟩ =
∑N

k=1 pkf (χk) denotes the average value of f (χ ) weighted by pk, i.e., ⟨χ lnχ⟩ =
∑N

k=1 pk(k/N) ln(k/N) and
χ⟩ =

∑N
k=1 pk(k/N). The entropy obtained by Eq. (10) upon considering [9,67] the time-reversal T̂ , i.e., T̂ pk = pN−k+1, is

labeled by S−, i.e.,

S− =

N∑
k=1

pN−k+1
k
N

ln
(

k
N

)
−

(
N∑

k=1

pN−k+1
k
N

)
ln

(
N∑

k=1

pN−k+1
k
N

)
. (11)

− is different from S, thus there exists a change ∆S ≡ S − S− in natural time under time reversal, as already mentioned
in the Introduction. Hence, S does satisfy the condition to be time-reversal asymmetric [9,65,67].

The quantity ∆S is of key importance to identify also when a system approaches a dynamic phase transition. Its
calculation is carried out by means of a window of length i (= number of successive events), sliding each time by one
vent, through the whole time series. The entropies Si and (S−)i, and therefrom their difference ∆Si, are calculated each

time. Thus, we form a new time series comprising successive ∆Si values.
Computing the standard deviation σ (∆Si) of the time series of ∆Si ≡ Si − (S−)i, the complexity measure Λi, which is

particularly very useful for the analysis of EQ catalogs, is defined by [9,68]

Λi =
σ (∆Si)

σ (∆S100)
(12)

here the denominator stands for the standard deviation σ (∆S100) of the time series of ∆Si of i = 100 events. Note that
he selection of a different scale in the denominator, e.g., i = 50 or 200 events, instead of i = 100 events, would change
f course the numerical values obtained but the whole behavior and physical picture of the results concerning the time
volution of Λi would remain the same [69]. Λi quantifies how the statistics of ∆Si time series varies upon changing the
cale from 100 to another scale i, and is of profound importance to study the dynamical evolution of a complex system
see p. 159 of Ref. [9]).

Natural time analysis reveals that the entropy change under time reversal is minimized before a major EQ. This is
onsistent with the fact that upon analyzing the Olami–Feder–Christensen (OFC) model for EQs in natural time, a non-
ero change ∆S of the entropy in natural time upon time reversal is identified [9,70], which reveals a breaking of the
ime symmetry, thus reflecting the predictability in the OFC model, see, e.g., [71]. In particular, in the OFC model, it was
ound (see Fig. 8.12, p.361 of Ref. [9]) that the value of ∆Si exhibits a clear minimum [9] (or maximum if we define as in
ef. [70] ∆S ≡ S− − S, instead of ∆S ≡ S− S−) before large avalanches. In view of this finding, natural time analysis of all
Qs in Japan (see Fig. 1) above a magnitude threshold (Mthres) from 1 January 1984 until the occurrence of the super-giant
9 Tohoku EQ on 11 March 2011 was made [72]. It was found that for longer scales, i.e, i > 3500 events, the minimum of
S is observed on 22 December 2010. This is consistent with the aforementioned finding in the OFC model. In addition,
tudying the complexity measure Λi versus i at the scales i = 2000, 3000 and 4000 events, Varotsos et al. [73] found an
vident increase ∆Λi on 22 December 2010 upon the occurrence of a M7.8 EQ obeying a scaling behavior of the form
Λi = A(t − t0)c , where the exponent c is independent of i with a value very close to 1/3, while the pre-factors A are
roportional to i and t0 is approximately 0.2 days after the M7.8 EQ occurrence. This behavior conforms to the seminal
ork by Lifshitz and Slyozov [74] and independently by Wagner [75] on phase transitions which shows that the time
rowth of the characteristic size of the minority phase droplets grows with time as t1/3.

. Data and analysis

The seismic catalog of the Japan Meteorological Agency (JMA) was used as in Refs. [58,59,76]. We considered all EQs of
agnitudeM ≥ 3.5 from 1984 until the Tohoku EQ occurrence on 11 March 2011 within the area 25◦

−46◦N, 125◦
−148◦E,

ee Fig. 1(a). The energy of EQs was obtained from the JMA magnitude M after converting [77] to the moment magnitude
w [40]. Setting a threshold Mthres = 3.5 to assure data completeness, there exist 47,204 EQs in the area under discussion.

hus, we have on the average ∼150 EQs per month for the area considered.

4
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a
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s

Fig. 1. Map of the entire Japanese area (a), along with the candidate epicentral area (b) for the 2011 Tohoku M9 EQ.

The time evolution of the entropy change ∆S under time reversal as well as the complexity measure Λi in NTA
re studied for a number of scales i of the seismicity with M ≥ 3.5 occurring in the whole area of Japan during the
forementioned 27 year period by choosing proper scales i as follows: We consider that investigations by means of NTA
howed that there exists the following interconnection between SES activities and seismicity [78]: The fluctuations of the
5
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Fig. 2. The κ1 values as well as the values of the change ∆Λ2000 , ∆Λ3000 and ∆Λ4000 of the complexity measures Λi for i = 2000, 3000 and 4000
vents, respectively, versus the conventional time since 00:00 LT on 9 March 2011 until the M9 Tohoku EQ occurrence. The shaded area marks the
eriod in the morning of 10 March 2011 during which the condition κ1 = 0.070 is fulfilled. The two thin arrows show the two EQs of magnitude
.4 and 5.2 upon the occurrence of which simultaneous changes of ∆Si and ∆S(q) appeared in Fig. 4. The thick arrow indicates the period of an
vident decrease of the three complexity measures ∆Λ2000 , ∆Λ3000 and ∆Λ4000 around 00:00LT on 11 March 2011.

rder parameter κ1 of seismicity exhibit a minimum labeled βmin when we observe the initiation of SES activities [53,79,80]
xhibiting critical behavior [12,66,81]. The latter have lead times ranging from a few weeks up to around 5 1

2 months [9]. In
ddition, beyond this simultaneous appearance of two different geophysical observables, i.e., SES activity and seismicity,
arotsos et al. [78] showed that these two phenomena are also linked closely in space, which opened the window for a
eliable estimation of the epicentral area of an impending major EQ. This has been subsequently confirmed in Ref. [59]
or all major mainshocks of magnitude 7.6 or larger that occurred in Japan during 1984–2011 including the case of the
9 Tohoku EQ, see Fig. 1(b). Concerning the latter EQ, before the initiation of the SES activity, and hence before βmin, a

tage (around 22 December 2010) has been detected in which the temporal correlations between EQ magnitudes exhibit
n anticorrelated behavior [82] (since the Detrended Fluctuation [83,84] exponent α was found α = 0.35) while after the
ES activity initiation long range correlations prevail between EQ magnitudes. Thus, a significant change in the temporal
orrelations between EQ magnitudes occurs when comparing the two stages that correspond to the periods before and
ust after the initiation of a SES activity. Since this change may be captured by the time evolution of ∆Si, we start our
nvestigation of ∆Si from the scale of i ∼ 103 events, which is of the order of the number of seismic events M ≥ 3.5 that
ccur during a period around the maximum lead time of SES activities.

. Results

As mentioned in the Introduction, we focus on the case of the M9 Tohoku EQ occurrence on 11 March 2011. We recall
hat in Ref. [85] the following results have been found: almost a day before this EQ, natural time analysis revealed that
he order parameter κ1 of seismicity, and in particular from 08:36 to 13:14 LT on 10 March 2011, fulfilled [61] the critical
ondition κ1 = 0.070 which signals that the system enters the critical stage and the main shock is going to occur within
he next few days or so, see Fig. 2. Just before this period, the following two important findings have been observed [85]:
irst, the Tsallis entropic index q showed distinct changes at 03:16 LT and 06:24 LT on 10 March 2011. Second, upon the
ccurrence of the M7.3 foreshock on 9 March 2011, a prominent increase of the Tsallis entropic index q was observed that
xhibited a scaling behavior with a characteristic exponent 1/3 which conforms to the seminal work by Lifshitz–Slyozov
nd independently by Wagner (LSW) on phase transitions predicting that the time growth of minority phase droplets
rows with time t as t1/3. As for the prefactor A in the quantity A(t − t0)c of Ref. [85] of LSW theory, we find that it
ncreases when the scale i decreases, see Fig. 3 of Ref. [85], in contrast to the complexity measure Λ quantifying the
i

6
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Fig. 3. Plot of the entropy change ∆Si (a) for the entire Japanese area shown in Fig. 1(a), and (b) for the candidate epicentral area for the 2011
ohoku M9 EQ depicted in Fig. 1(b) versus the conventional time. The same is plotted in (c) and (d) but for the Tsallis entropy Sq .

luctuations of the entropy change under time-reversal for which the LSW prefactor A increases upon increasing the scale
[73].
Here, the following additional results emerge, see Figs. 3 and 4:
First, after the aforementioned period from 08:36 at 13:14 LT on 10 March 2011 in which the system entered the critical

tage, we observe in Fig. 4(a)–(d) that simultaneous changes appear at 18:00 and 20:00 LT on 10 March 2011 on both
he entropy change ∆Si under time reversal in NTA and the Tsallis entropy Sq in NESM. Remarkably, these simultaneous
hanges are evident when computed in the future epicentral region but can be also seen – but with much difficulty
when the computation is made in the entire Japanese region. Second, a few hours later, the changes ∆Λi of all the

omplexity measures ∆Λ , ∆Λ and ∆Λ exhibit a simultaneous variation almost around 00:00 LT on 11 March
2000 3000 4000

7
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a

Fig. 4. The same as in Fig. 3 but in expanded time scale. The gray shaded area indicates the time period when true coincidence (i.e., the critical
condition κ1 = 0.070 holds) has been observed in Ref. [61], see also Fig. 2.

2011, i.e., several hours before the giant EQ occurrence, see Fig. 2. Third, Tsallis entropy Sq was found to exhibit scaling
fter the M7.3 foreshock occurrence on 9 March 2011 with a characteristic exponent 1/3 which conforms to the LSW

phase transition theory as shown in Fig. 5.

5. Main conclusion

The combination of natural time analysis of seismicity with the non-extensive statistical mechanics enables the
shortening of the time window of the impending 2011 Tohoku M9 EQ to several hours.
8
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Fig. 5. Tsallis entropy shortly after (with t0 = 0.06 day) the M7.3 foreshock occurrence on 9 March 2011 for various scales i.
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