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Sudden cardiac death (SCD) is one of the leading causes of death worldwide. Many
individuals have no cardiovascular symptoms before the SCDevent. As a result, the
ability to identify the risk before such an event is extremely limited. Timely and
accurate prediction of SCD using new electronic technologies is greatly needed.
In this work, a new innovative e-health cloud-based system is presented that
allows a stratification of SCD risk based on the method of natural time entropy
variability analysis. This innovative, non-invasive system can be used easily in any
setting. The e-health cloud-based systemwas evaluated using data from a total of
203 individuals, patients with chronic heart failure (CHF) who are at high risk of
SCD and age-matched healthy controls. Statistical analysis was performed in two-
time windows of different duration; the first-time window had a duration of
20 min, while the second was 10 min. Employing modern methods of machine
learning, classifiers for the discrimination of CHF patients from the healthy
controls were obtained for the first as well as the second (half-time) window.
The results indicated a very good separation between the two groups, even from
samples taken in a 10-min time window. Larger studies are needed to further
validate this novel e-health cloud-based system before its use in everyday
clinical practice.
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1 Introduction

Sudden cardiac death (SCD) is a frequent cause of death and may occur even if the
electrocardiogram (ECG) seems to be similar to that of a healthy (H) individual. More people
die from SCD thanHIV, breast cancer, lung cancer, and stroke combined (Arora et al., 2007).
A method that may identify patients at high risk for SCD, provide an estimate of an
impending cardiac arrest and distinguish chronic heart failure (CHF) patients from H
individuals has been developed by Varotsos et al. (2007).

The above method was built on the basis of the following two cornerstones:
First, it is most likely that physiological time series contain both stochastic and

deterministic components (Costa et al., 2002; Costa et al., 2005; Varotsos et al., 2004).
Since, however, the concept of entropy can be applied to stochastic as well as deterministic
processes, it has been used to ECG analysis (Varotsos et al., 2004).

OPEN ACCESS

EDITED BY

Longhui Zeng,
Hong Kong Polytechnic University, Hong
Kong SAR, China

REVIEWED BY

Yunrui Jiang,
University of California, San Diego,
United States
Zhaoyu Lai,
University of California, San Diego,
United States
Jiajia Wu,
University of California, San Diego,
United States

*CORRESPONDENCE

V. Christofilakis,
vachrist@uoi.gr

RECEIVED 10 October 2023
ACCEPTED 13 December 2023
PUBLISHED 22 December 2023

CITATION

Tatsis G, Baldoumas G, Christofilakis V,
Kostarakis P, Varotsos PA, Sarlis NV,
Skordas ES, Bechlioulis A, Michalis LK and
Naka KK (2023), A new e-health cloud-
based system for cardiovascular
risk assessment.
Front. Electron. 4:1315132.
doi: 10.3389/felec.2023.1315132

COPYRIGHT

© 2023 Tatsis, Baldoumas, Christofilakis,
Kostarakis, Varotsos, Sarlis, Skordas,
Bechlioulis, Michalis and Naka. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Electronics frontiersin.org01

TYPE Original Research
PUBLISHED 22 December 2023
DOI 10.3389/felec.2023.1315132

https://www.frontiersin.org/articles/10.3389/felec.2023.1315132/full
https://www.frontiersin.org/articles/10.3389/felec.2023.1315132/full
https://www.frontiersin.org/articles/10.3389/felec.2023.1315132/full
https://crossmark.crossref.org/dialog/?doi=10.3389/felec.2023.1315132&domain=pdf&date_stamp=2023-12-22
mailto:vachrist@uoi.gr
mailto:vachrist@uoi.gr
https://doi.org/10.3389/felec.2023.1315132
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org/journals/electronics#editorial-board
https://www.frontiersin.org/journals/electronics#editorial-board
https://doi.org/10.3389/felec.2023.1315132


Second, the entropy employed in the above method has been
defined in the natural time domain which differs essentially from
others (Varotsos et al., 2011; Varotsos et al., 2023). Both the entropy
S in natural time as well as the entropy in natural time under time
reversal S− along with their difference ΔS ≡ S − S− have been found of
paramount importance in the analysis of ECGs. Such an application to
the analysis of ECG reveals that we can separate ECG of H individuals
from those suffering from CHF and are at risk of SCD (Varotsos et al.,
2007). This successful separation has been achieved because the quantity
ΔS -which did not exist in other types of entropies published in the
literature-identifies when a dynamic system approaches criticality.

Beyond the standard ECG characterized by a sequence of P, QRS,
and T waves, in recent years, a technique termed photoelectric
plethysmography, also known as photoplethysmography (PPG),
has simplified the recording of heart rate in an easy and reliable

way (Allen, 2007; Tamura et al., 2014; Park et al., 2022). We have
recently constructed a portable PPG electronic device which gives
results comparable with a standard ECG. This enables remote sensing
natural time analysis of heartbeat data and achieves a distinction
between H and CHF patients.

In the present work, we focus our study in the case of 10 min
recordings by employing a variety of modern methods of machine
learning. The novel e-health cloud-based system consists of three
distinct parts: the PPG device, the application, and the web service.
The objective of the e-health cloud-based system is twofold. First, we
need to obtain not only reliable results, as demonstrated in following
sections, but also results that are instant and understandable, e.g.,
similar to the indication of a body temperature thermometer.
Second, we focus on the simplicity and portability of the system
so that it can be used anywhere and by anyone. The system can be

FIGURE 1
Typical PPG signal captured by the prototype device, with red dots indicating detected peaks. The raw signal has gray color whereas the smoothed
signal has blue color. The time difference between two consecutive peaks is the inter-beat interval labeled IBI.

FIGURE 2
The system architecture.
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used anywhere, at home or in a non-healthcare setting. This is vital
since the majority of cardiovascular risk assessment methods require
medical equipment and qualified medical personnel in a hospital or
in a medical Centre while on the other hand, most out-of-hospital
cardiac arrests occur in private homes (Milan and Perman, 2016).
The remainder of this paper is organized in the following Sections:
Section 2 presents material and methods; in Section 3 Results and
Discussion are given and the Conclusions follow in Section 4.

2 Materials and methods

2.1 Data analyzed

The present database contains PPG recordings from 32 H
individuals (9 women and 23 men), aged 24 to 58, and
171 recordings from CHF patients (33 women and 138 men), aged
31 to 89, which were collected in the setting of the second Department
of Cardiology, University Hospital of Ioannina, Ioannina, Greece.
Thus, we studied in total N � 203 subjects. The measurements took
place with patients lying quietly for 20 min in the supine position on
their bed. The measurements procedure inevitably includes all kind of
noise sources introduced to the system, such as thermal noise,
quantization noise of the digitization process, light/electromagnetic
interferences, artifacts of mechanical movements, etc. Therefore, the
results of this study do not assume the absence or a minimum level of
noise at all. The only effort to reduce to some extent–but not
completely–artifacts due to movements was by instructing, as
already mentioned, the subjects to be as steady or immobile as
possible, to obtain standardized results. The PPG signals were
recorded using the relevant device applied usually to the right
index figure. Since the current study focuses mainly on the
efficiency of the classification method used, it was mandatory for
the sampling procedure to ensure consistency among the
measurements for every subject and hence to follow a standard
protocol. The time duration of continuous PPG recording was
20 min for each subject. Experimentally we observed that, in the
first 2–3 min, the subjects are stressed, as it is evident from the
recording process. Also, for about the last 2 to 3 of the total
20 min, the subjects become tired or numb from immobility,
consequently moving their hands and fingers where the recording
device is attached. Depending on the intensity of the movements,

electrical noise is added to the PPG signal. In order to avoid the
aforementioned noisy samples, we preprocess the recordings of
20 min length by keeping the innermost 10 min by trimming the
time series at the beginning and at the end of it.

For all patients, data regarding personal medical history, current
medications, and recent biochemical/metabolic profile were
recorded. The measurements of healthy subjects, who were
selected among the medical and nursing staff of the cardiology
department, were performed in a quiet room with the same
methodology as described above for CHF patients.

2.2 Photoplethysmography

This technique has been employed for measuring blood volume
changes in the extremity tissues. In 1938, Hertzman found a
correlation between the intensity of the light reflection of the
skin and its blood supply in several body skin locations
(Hertzman, 1938). From 1980 the PPG method is used in pulse
oximetry for monitoring a person’s oxygen saturation into clinical
care. Nowadays the PPG technology is included in many modern
wearable devices such as smart phones, smart watches, tablets,
bracelets, rings, etc. It is a simple technique with low cost that
provides important health-related information such as heart rate
variability (HRV), blood oxygen saturation (SpO2), blood pressure
and the respiratory rate (Park and Jayaraman, 2003; Elgendi, 2012).

The concept of the PPG methodology is simple and requires a
light source especially Infra-Red Light Emitting Diode (IR-LED) or a
red LED which illuminates the tissue such as finger, earlobe and
forehead(Moraes et al., 2018). A photodetector measures the intensity
variations of reflected or transmitted light from the blood volume
variation in the tissue (Jayadevappa and Holi, 2016). Figure 1
illustrates a typical PPG signal that was captured from a healthy
34-year-old man. It has a triangular shape with two peaks and for our
convenience, the upper peak was labeled as P peak-pulse. The inter
beat interval (IBI) is defined as the interval between two consecutive P
peaks, and this is why it is called PP interval.

2.3 The e-health cloud-based system
architecture and specifications

The novel e-health cloud-based system consists of three distinct
parts: the PPG device, the application, and the web service as shown
in Figure 2.

FIGURE 3
The PPG device.

TABLE 1 PPG device technical details.

Pulse oximeter
chip

MAX30102

Microcontroller ESP8266

Wifi module ESP-01

Interfaces I2C, Wifi

Power 12V, 100mA, nano usb

Autonomy ≈12 h with a 1200mAh battery (can be extended with use of
solar panels)
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2.3.1 The PPG device
The first part is the prototype circuit of the measuring device

manufactured in the Electronics—Telecommunications and
Applications Lab of the University of Ioannina. Figure 3 shows a

photograph of the implemented PPG device and Table 1 shows its
technical specifications. Its purpose is to sample continuously the
heart rate signal of an individual using the method of PPG (Park
et al., 2022). A proper case is constructed to fit the person’s finger.

FIGURE 4
Screenshots of the Android application, (A) the starting screen, (B) the recording progress with visualization for checking signal quality (C) Stop and
save data screen (D) the uploading to server menu.
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The prototype integrates the pulse oximeter chip MAX30102 by
Analog Devices Inc, which utilizes an IR-LED and a photodetector.
The infrared light illuminates the fingertip and the reflection is
detected and measured by the photodetector. Small variations due to
blood circulation causes the reflection level to fluctuate accordingly.

The signal is captured with the help of the Wifi module ESP-01
having onboard the system on chip (SoC) ESP8266 by Espressif
Systems. The microprocessor communicates with the oximeter via
the I2C interface and acts as a Wifi access point (WiFi-AP) to
communicate with a smartphone with a dedicated in-house

FIGURE 5
Screenshot of the web interface for the user showing all individual’s/patient’s measurements (A) and filtered by ID (B) in a two-dimensional diagram
with the two complexity measures Λ7 and Λ49 of the classification. The regions defined by the red lines distinguish the healthy population from the
CHF one.

FIGURE 6
Exploratory data analysis of the database in the form of a matrix of figures: The elements of the cross-correlation matrix between the quantities
(σ[ΔS3], σ[ΔS5], σ[ΔS7], σ[ΔS35], σ[ΔS49], Λ7) are shown in the upper triangle. In the lower triangle, each quantity is plotted versus another. The average values
are shownwith a red dot and a correlation ellipse is also drawn, for details see the pairs.panels command of the psych package (William Revelle, 2023) of R
that has been used. In the diagonal, the distribution of each quantity is shown.
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application developed. The device is equipped with its own Li-ion
battery and a usb charging circuit resulting in a total portable
solution with autonomy of 12 hours.

2.3.2 The application
The high-level user interface is an application (app) that can be

installed on any smartphone or tablet running Android 4 or higher.

The app helps the user to quickly start a recording of the PPG signal
and save these signals in files. The files have a unique serial number
for each subject along with a timestamp that identifies them. The
whole processing of the files with the innovative algorithm is
conducted in a server installed in our laboratory. The recordings
may take place off-line, the smartphone connects directly to the
Wifi-capable prototype device. For the rest of the operation, an

FIGURE 7
The quantity σ[ΔS35] versus Λ7 for both CHF (red asterisks) and H (green crosses). For a simpler visualization the quantity σ[ΔS35] depicted is
1000 times larger (cf. this convention applies to all the figures, hereafter). The H-limits identified by the decision tree of the first trial of the (majority rule of
the) C5.0 classification (Kuhn and Quinlan, 2023) employed is depicted by the green lines in the lower rightmost quadrant.

FIGURE 8
The H-limits identified by the decision tree of the first trial of the majority rule of the C5.0 classification employed: How the quantity σ[ΔS5](>0.491)
allows the identification 22 H (green candlesticks ending at crosses) with a mixing of 7 CHF (red candlesticks) within the lower rightmost quadrant of
Figure 7. This decision tree, which can be simplified to the rule that a subject is H if Λ7 > 1.715, σ[ΔS35] ≤ 2.209, and σ[ΔS5] > 0.491 leads to a CHF sensitivity
sCHF= 164/171 = 95.9% and an H sensitivity sH= 22/32 = 68.75%. The latter quantities are drastically increased to sCHF= 170/171 = 99.4% and sH=30/
32 = 93.75%, respectively, when employing a majority rule with 20 trials.
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internet connection is required. The users can view the results via the
web interface of the website developed. The users have access only to
their specific recordings by logging in with credentials. It is
important to note that no personal information is stored on the
server, only encoded serial numbers for names, protecting
individual’s privacy. Figure 4, shows the graphical user interface
of the Android application. Apart from the possibility of language
selection, there are also 3 additional buttons. By selecting the quit
button the application can be closed and by selecting the recording
button we have the ability to see previous results (Figure 4A). By
pressing new recording the right window opens. We enter the
unique serial number of the subject and then press the start
recording button. The cardiogram is displayed in real time
(Figure 4B). When the required time has elapsed, we press the
stop recording button and by pressing yes, the data is stored in the
local memory of the android device and processed online
(Figure 4C). The user simply selects and uploads the recordings
that have been chosen to process and in few seconds the results are
reported in a web page while simultaneously the status is changed to
“OK” (Figure 4D).

2.3.3 Signal processing
The innovative algorithm applied in this research data is based on

the concept of Natural Time Analysis (NTA) (Varotsos et al., 2011;
Varotsos et al., 2023) and the parameter extracted from the signal is the
IBI that is the time between two sequential heart beats or pulses (PP).
We may also think this parameter as the RR equivalent in an ECG.
This metric measured with the PPG device is found to be in excellent
agreement compared to the standard of an ECG. The raw signal that
the oximeter produces is shown in Figure 2. The sampling rate is set to
400 samples/sec while an automatic averaging is also performed every

4 samples in order to reduce the noise thus getting and store
100 samples/sec. The smartphone stores the files that have a total
duration of about 20 min each. The files are uploaded to the server as
mentioned in a previous Section and are simultaneously processed.
The PP metric extraction from the signal follows a simple peak
detection method. First, we smooth the signal by moving average
with a window length of 0.1 s. This typically ensures that in every
period only one localmaximum exists by removing any high frequency
noise spikes in between. In Figure 2, the initial raw signal has gray color
and the smoothed has blue. Inevitably the smoothing acts as a low pass
filter which slightly distorts the signal but without altering the low
frequency components which include the information needed. Then a
peak search algorithm follows; that finds the local maxima in amoving
time-window that must be narrow enough to contain at most 1 peak
andwide enough to include the ascending-descending sides of the peak
as well. We used the value of 0.3 s, which is an empirical limit that is
always less than a period for measurements in the relaxed state,
corresponding to an equivalent heart-rate of 180 bpm. The above
procedure ends with a list of PP values in a vector array that is used to
feed the feature extraction algorithm employed by the classification
method we choose.

2.3.4 The web service
The processing of the uploaded files in the server is done

automatically once the files are transferred. The results are
organized in a simple user-based manner. The user is the owner
of a device that has a unique code (password) that gives access to his/
her data only. A user may be a doctor or a clinician or an individual
who is responsible to organize the patients giving them a
corresponding identification number (ID). The mapping of the
IDs with the patients is an information known only to the user.

FIGURE 9
Results of the application of the K-means unsupervised classification algorithm: The distribution of the 203 subjects of our study into 10 classes. The
H correspond to subject indices 101 to 132 and are indicated by the green rectangle. They mainly concentrate into two classes the one labeled 5 and the
one labeled 8. By selecting these two clusters as H-clusters, we are led to a CHF sensitivity sCHF= 144/171 = 84.2% and an H sensitivity sH= 28/32 = 87.5%.
Here, the kmeans clustering function of the stats package of R has been employed (R Core Team, 2013) together with the common (Lantz, 2013) rule
of thumb to set k equal to

����N /2
√

≈ 10 clusters.
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There is no personal information in the server, thus protecting
sensitive data. If the owner is an individual that uses the device for
his/her measurements only, then he/she may view the results of the
process directly in the web interface. If the user is a doctor and with
the same device makes measurements with more than one patient,
then the doctor is responsible to give the results to the patient, for
example, by sending them via email. The web interface can filter
patients by their ID and the doctor may print the results of a specific
patient. In Figure 5, a screenshot of the web interface is depicted,
where a user may retrieve information regarding specific
measurements taken. Each point corresponds to a single
measurement. The number in the labels are the patients’ IDs.

3 Results and discussion

The results come from the entropy variation analysis which has as a
theoretical background themonographs (Varotsos et al., 2011; Varotsos

et al., 2023) describing natural time analysis. After data acquisition from
the PPG system and the completion of the signal processing, including
calculation of PP time series, the quantities σ[ΔS3], σ[ΔS5], σ[ΔS7],
σ[ΔS35], and σ[ΔS49] for each individual, have been determined, see
Figure 6. These quantities allow, for example, the estimation of the two
complexity measures Λ7 and Λ49 shown in Figure 5.

Figure 6 summarizes the results and the interrelations between
the components of the six-vectors.(σ[ΔS3], σ[ΔS5], σ[ΔS7], σ[ΔS35],
σ[ΔS49], Λ7) that constitute the parameter space used for the
optimization of the separation of CHF from H. To this end, we
employed the C5.0 decision tree algorithm the application of which
leads (see Figure 7, 8) to a CHF sensitivity sCHF = 99.4% and an H
sensitivity sH = 93.75%. This method is easily adopted by the web
service server of Figure 2, and screenshots similar to Figure 7, 8 can
be provided to the users.

The five scales l = 3, 5, 7, 35, and 49 involved, as well as the
complexity measure Λ7 are closely related to the spectral density
study of HRV (Taskforce ESC/NASPE, 1996) since the following

FIGURE 10
The location of the K-means cluster centers in the parameter space (red candlesticks ending at solid circles). The clusters labeled 5 and 8 correspond
to the H. (A) The K-means cluster centers in the (σ[ΔS3], σ[ΔS5], σ[ΔS7]) subspace labeled according to their cluster name. (B) The K-means cluster centers
in the (σ[ΔS35], σ[ΔS49], Λ7) subspace labeled according to their cluster name.
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two clear frequency bands in heart rate and blood pressure with
autonomic involvement have been established (Malpas, 2002): 1) A
higher frequency (HF) band, which lies in (Bigger et al., 1995;
Prokhorov et al., 2003) the range 0.15–0.40 Hz and 2) A lower
frequency (LF) band from 0.04 to 0.15 Hz (i.e., at around 0.1 Hz). In
addition, the existence of a very low frequency band (VLF) in the
region 0.003–0.04 Hz has been identified (Taskforce ESC/NASPE,
1996). Hence the scales l = 3 and 5 correspond to HF, whereas the
scales l = 7, 35, and l = 49 lie near to the transition from the HF to the
LF band and from the LF band to the VLF band, respectively.

As an additional check of the consistency of the parameter space
employed and the results found, we used the K-means unsupervised
classification algorithm. Of note, the K-means problem (Hartigan
andWong, 1979) consists of dividing a set of multivariate data into k
non-overlapping groups in such a way as to minimize the sum
(across the groups) of the sums of squared residual distances to the
group centroids (this statistic is usually called Sum of Squared
Errors, SSE). Figures 9, 10 show that the two clusters labeled
5 and 8 contain the vast majority of H, 28 out of 32. It is worth
mentioning that two H-clusters spontaneously surface upon the
application of the K-means algorithm.

The originality of the present work lies primarily in the fact that
the application, the processing, and the service that supports all the
functionalities have been integrated for the first time in a prototype
system that has also reduced the convergence times, using real data
for more than two hundred individuals, giving accurate results. In
the future, and when larger studies have further validated the present
e-health cloud-based system, then it can be integrated into a new
commercial device.

4 Conclusion and future
research trends

An innovative e-health cloud-based system that allows an
estimation of SCD risk based on the method of natural time
entropy was presented. This system is able to sample
continuously the HRV of an individual by means of PPG. The
users that have access only to their records by logging in with
credentials, can view the NTA results via the web interface of the
website developed. No personal information is stored on the server.
Focusing on 10 min recordings, we presented various classifiers in
NTA that allow the discrimination of CHF patients from the healthy
controls. Although these results indicated a very good separation
between the two groups, even from samples taken in a 10 min time
window larger studies are needed to draw solid conclusions.

The restrictions along with future research trends follow: The
robustness of PPG signals remains a challenging issue. It is known
that even the slightest movement at the fingertip alters the PPG
signal. For this reason, advanced processing techniques and
algorithms must be developed for signal recovery. In addition,
ergonomic design improvements for enhanced user comfort

could significantly increase the system’s practicality and user
adherence. One of the next research directions include receiving
PPG signals from a different spot, such as the earlobe. In
combination with all the above, the main scope of future
research is the further reduction of convergence time in
combination with accurate individuals’ classification.
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