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Abstract: Almost two years after the devastating 1999 MW7.6 Chi-Chi earthquake, a new
concept of time termed natural time (NT) was introduced in 2001 that reveals unique
dynamic features hidden behind the time series of complex systems. In particular, NT
analysis enables the study of the dynamical evolution of a complex system and identifies
when the system enters a critical stage. Since the observed earthquake scaling laws indicate
the existence of phenomena closely associated with the proximity of the system to a critical
point, here we apply NT analysis to seismicity that preceded the 3 April 2024 MW7.4
Hualien earthquake. We find that in the beginning of September 2023 the order parameter
of seismicity exhibited a clearly detectable minimum. Such a minimum demonstrates
that seismic electric signal (SES) activity initiated which comprises several low-frequency
transient changes of the electric field of the Earth preceding major earthquakes.

Keywords: Taiwan; natural time analysis; Chi-Chi earthquake; Hualien earthquake;
earthquake prediction

1. Introduction
Earthquakes (EQs) exhibit complex correlations in time, space, and magnitude, and the

opinion prevails (e.g., [1] and references therein) that the EQs are critical phenomena. Two
years after the disastrous Chi-Chi EQ that occurred in 1999, a new concept of time termed
natural time (NT) [2] was introduced that identifies when a complex system approaches
the critical point (CP). This concept generally enables the estimation of the time of an
impending major EQ occurrence. Because almost 25 years later, the MW7.4 Hualien EQ
occurred on 3 April 2024, it is of major importance to investigate whether the NT analysis
could identify in advance the occurrence of these two major EQs in Taiwan region, i.e., the
Chi-Chi EQ and the Hualien EQ, shown in Figure 1. To achieve such an investigation, the
following steps are made: In the next Section 2, the basic points of natural time analysis are
presented including the procedure of the derivation of the order parameter of seismicity
by means of which one can approach the CP. In a subsequent Section 3, it is explained
that the fluctuations of the order parameter of seismicity are minimized before major EQs.
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Our main results are presented in Section 4 and discussed in Section 5. Finally, Section 6
presents our conclusions.

Figure 1. Map of Taiwan depicting the epicenters and the EQ mechanisms for the 1999 Chi-Chi and
the 2024 Hualien EQs.

2. Natural Time Background
For a time series comprising N events, we define as natural time χk, corresponding to

the event that occurred k-th in order, the quantity χk = k/N [2–4]. Hence, in NT we ignore
the conventional time durations between successive events. For each event, we consider,
however, its energy denoted by Qk and study the pairs (χk, pk), where pk = Qk/ ∑N

n=1 Qn.
Due to its definition, pk for the k-th event can be considered as a probability that equals the
aforementioned normalized energy.

In NT analysis, we investigate the properties of the distribution pk by means of the
quantity Π(ω) ≡ |Φ(ω)|2, where Φ(ω) = ∑N

k=1 pk exp(iωχk) with ω the angular natural
frequency. In terms of probability theory, Φ(ω) is the characteristic function of pk for all
ω ∈ R.
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As is well known [5], Φ(ω) when ω → 0 can provide information for the distribution
pk since the derivatives dmΦ(ω)/dωm (for m positive integer) as ω → 0 are related to the
moments of pk.

The quantity κ1 of NT can be defined through the Taylor expansion Π(ω) = 1 −
κ1ω2 + κ2ω4 + . . . where

κ1 = ⟨χ2⟩ − ⟨χ⟩2 =
N

∑
k=1

pk(χk)
2 −

(
N

∑
k=1

pkχk

)2

. (1)

A careful inspection reveals (see Chapter 6 of [3]) that the quantity κ1 may be consid-
ered as an order parameter of seismicity.

Another quantity that is useful in NT analysis is the entropy S in natural time [2–4]:

S = ⟨χ ln χ⟩ − ⟨χ⟩ ln⟨χ⟩ =
N

∑
k=1

pk
k
N

ln
(

k
N

)
−
(

N

∑
k=1

pk
k
N

)
ln

(
N

∑
k=1

pk
k
N

)
. (2)

Entropy S, which exhibits [3] concavity and Lesche stability [6,7], is a dynamic
entropy [3,4,8,9] fundamentally different from the Shannon entropy [10]:

H = −
N

∑
i=1

pi ln pi (3)

or the Tsallis entropy (see, e.g., [11–15]):

Sq =

(
1 − ∑N

i=1 pq
i

)
(q − 1)

, (4)

introduced by Tsallis [16] in 1988. When Qk are positive independent and identically
distributed random variables, we obtain the so-called “uniform” distribution [3,4] and the
corresponding entropy in natural time is Su = ln 2

2 − 1
4 ≈ 0.0966.

Being a dynamic entropy, S changes its value to S− when we consider time reversal T̂
that reverses the order of the events, i.e., T̂pk = pN−k+1. In this case, we have

S− =
N

∑
k=1

pN−k+1
k
N

ln
(

k
N

)
−
(

N

∑
k=1

pN−k+1
k
N

)
ln

(
N

∑
k=1

pN−k+1
k
N

)
. (5)

Thus, time reversal leads to a change ∆S of the entropy in NT, which is given by
∆S ≡ S − S− (for its applications see [3,4,8,9] and the references therein).

3. The Fluctuations of the Order Parameter of Seismicity
For the study of the fluctuations of the order parameter of seismicity κ1, we should

have a set of κ1 values for each target EQ. To this end, we consider the successive EQs that
took place within a window of W events just before the target EQ in the seismic catalog. The
window length W is selected so that it covers a period of a few months. We do so because
the lead time of seismic electric signal (SES) activities (which are [3] series of low-frequency
(≤1 Hz) variations in the electric—and magnetic [17]—field of the Earth that precede EQs, see,
e.g., [3,18–21]) varies from a few weeks to 51

2 months (see Chapter 7 of [3]).

Within each window of W EQs, we consider sub-excerpts Sj =
{

Qj+k−1

}
k=1,2...,N

of

successive N = 6 EQs (since at least six EQs are needed [22] for obtaining reliable κ1) of
energy Qj+k−1 and NT χk = k/N each. Assuming pk = Qj+k−1/ ∑N

k=1 Qj+k−1 and sliding
Sj within the window of W EQs, j = 1, 2, . . . , W − N + 1(= W − 5), we calculate κ1 using
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Equation (1) for each j. Then, we repeat the κ1 calculation for N = 7, 8, . . . , W, hence
acquiring [(W − 4)(W − 5)]/2(= 1 + 2 + . . . + W − 5) κ1 values. Using this statistical
ensemble, we can estimate the average µ(κ1) and the standard deviation σ(κ1) of κ1 values
just before the target EQ. We define (see, e.g., [3,4]) the variability β that quantifies the
fluctuations of κ1 within this window of W EQs as follows:

β ≡ σ(κ1)/µ(κ1). (6)

This value of β is designated to the (W + 1)-th event in the EQ time series, which is
the target EQ.

The change through time of β can be obtained by sliding event by event the window
of W EQs through the EQ catalog. In order to indicate the length W of the window used in
the calculation of β, the notation (βW) is utilized.

The seismicity of Japan was analyzed [22] in NT from 1 January 1984 until the time
of M9 Tohoku EQ on 11 March 2011. The length W used in our analysis corresponds to
the number of EQs that would happen in the region in a time period of a few months.
The following results were obtained: The deepest βW minimum during the whole studied
period was observed almost 2 months before the M9 Tohoku EQ. Distinct minima of βW

of smaller depth, were also found one month to three months before the occurrence of all
other Japanese major EQs (MJMA ≥ 7.6, depth < 400 km) during 1984–2011. Specifically, by
employing the seismic catalog of the Japan Meteorological Agency (JMA) and analyzing
in NT all EQs within N46o

25o E148o

125o with MJMA > 3.4, one has 47,204 EQs since 1984 until the
occurrence of the 2011 M9 Tohoku EQ. This leads to an average rate of ≈ 102 EQs per month.
Sarlis et al. [22] studied the fluctuations of the order parameter of seismicity using β200

and β300 and in order to identify the aforementioned precursory minima βW,min considered
the concurring local minima of β200 and β300 that satisfy the condition β200,min < 0.296
with a ratio rmin ≡ β300,min/β200,min within the limits rmin ∈ [0.95, 1.08]. This analysis led to
βW,min that are precursory to all shallow EQs with MJMA ≥ 7.6 as well as to minima that
preceded strong EQs of smaller magnitude, see Tables 1 and 2 of [22].

The resulting EQ prediction method was found to be statistically significant, see,
e.g., [23] and the references therein, even when considering [24] the recent method of event
coincidence analysis [25–27]. Furthermore, very recently a procedure was suggested based
on natural time through which one can identify when the accumulation of stresses before
major EQs (of magnitude M8.2 or larger) occurs [9] as well as how an additional procedure
can improve the estimation of the occurrence time of an impending EQ by using the entropy
change of seismicity in natural under time reversal [8].

4. Results
Here, we focus our attention to the Taiwan region N25.5o

21.5o E122.0o

119.5o shown in Figure 1. We
employ the United States National Earthquake Information Center (NEIC) PDE EQ catalog
which is openly available by the United States Geological Survey (USGS), apply a magni-
tude cut-off Mc = 3.9 and analyze in NT all EQs with M > Mc inside the aforementioned
region since 1981. This way, starting from 1981 were left with 2712 EQs until the M7.4
Hualien EQ that took place at 23:58 UTC on 2 April 2024. Following [22], we first consider
the monthly rate of EQ occurrence which is ≈5 EQs/month. Thus, in accordance with the
aforementioned study in Japan, we focus our attention to W = 10 and W = 15. Figure 2
shows the results for β10 and β15 obtained when analysing seismicity for the concerned
period (1 January 1981 to the time of occurrrence of the Hualien EQ) of approximately
43 years (cf. to obtain the first values of βW we need at least W EQs and this is the reason
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why βW start later than 1 January 1981 in Figure 2). Upon making the selection (see also
the lower panel of Figure 2)

β10 < 0.137 (7)

and
1.34 < rmin < 1.48 (8)

we are left with precursory minima on 20 August 1999 for the Chi-Chi earthquake that
occurred one month later and on 5 September 2023 for the Hualien earthquake that occurred
almost seven months later shown in Figures 3A and 3B, respectively. Here, we note that
these two events are the strongest in Taiwan during the last 60 years according to the
International Seismological Center [28,29] (their ISC event numbers are 1,718,616 and
637,103,828, respectively). We recall that from the totality of the concurring local minima
observed for β10 and β15 only the ones that satisfy the inequality shown in Equation (7)
having an rmin(=β15,min/β10,min) within the range defined by the relation of Equation (8)
are considered here. For example, as can be seen in the lower panel of Figure 2 while β10

falls below the value 0.137 (shown by the thick red horizontal line) often only in five cases
the concurrent β15,min is such that rmin satisfies the relation of Equation (8). In such cases,
both β10,min and β15,min are marked with red and blue circles, respectively, in Figure 2.
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Figure 2. The variabilites βW for W = 10 (red) and W = 15 (blue) versus the conventional time
(UTC) for the seismicity within N25.5o

21.5o E122.0o

119.5o since 1981 to the time of occurrence of the Hualien EQ.
The black impulses ending at solid circles indicate EQ occurences. The magnitude of each EQ can
be read in the right scale. The horizontal line corresponds to 0.137 while the red and blue circles
mark the minima identified by the conditions shown in Equations (7) and (8). The validity of these
two conditions can be verified in the lower panel, which is a zoomed-in area of the upper panel in
expanded vertical βW scale.

As a result, apart from the aforementioned two precursory minima we also obtain
three other minima marked with circles in Figure 2. The first of these minima occurs during
the period 11 to 13 October 1999 and is shown in Figure 3A; it precedes an M6.3 earthquake
that occurred at 17:53 UTC on 1 November 1999 at N 23.38◦E 121.52◦. The other two
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minima are shown in Figure 4: the one taking place on 10 March 2007 with a β10,min value
(see the lower panel of Figure 4) which is smaller than β10,min = 0.109 observed before the
Chi-Chi EQ (see the lower panel of Figure 2) and hence in principle can be excluded from
further analysis, and the other on 28 July 2015 preceded the 5 February 2016 M6.4 EQ at
N22.94◦E120.60◦.
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Figure 3. Excerpts of Figure 2 before (A) the Chi-Chi and (B) the Hualien EQs.
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In order to investigate the statistical significance of the aforementioned results concern-
ing both Chi-Chi and Hualien EQs we work as follows: assuming that both Chi-Chi and
Hualien EQs occurred after 7 months at the most after the observation of βW,min, we can
separate the almost 43-year period of our study (actually 519 months) in 74 seven-month
periods. Considering that the minimum on October 1999 covers the same seven-month
period with the precursory one on 20 August 1999 and that the minimum in 2007 can
be discarded as mentioned in the previous paragraph, we are left with the three active
seven-month periods of alarm corresponding to a total duration of (3/74=) ≈4% of the
study period. Figure 5 shows the corresponding receiver operating characteristics (ROC)
diagram [30] by means of which we can conclude that the probability p to observe such a
result by chance is less than 0.8%.
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Figure 5. ROC diagram corresponding to the EQ prediction method discussed in the text. The target
is to predict Chi-Chi and Hualien EQs using the conditions shown in Equations (7) and (8) when
considering seven-month periods. The colour contours indicate the probability p to obtain by chance
a point in the ROC plane when 2(=P) events out of 74(=P + Q) are to be predicted (for details on the
meaning of the hit rate, the false alarm rate, and the method used to estimate the p-values see [31]).
The operation point of the present EQ prediction method is indicated by the open circle and has a
p-value 0.75%.

5. Discussion
As shown in detail in Chapter 5 of [4], the determination of a precursory variability

minimum βW,min allows an estimation of the occurrence time of an impending strong EQ.
In particular, Varotsos et al. [32] have shown that when a precursory βW,min is observed, it
is accompanied by a simultaneous SES activity. SES activity indicates that the region around
the future hypocenter has reached criticality, thus we can employ NT analysis of the seismicity
(i.e., of the EQs with M ≥ Mthres) inside the region candidate to suffer the strong EQ and
obtain an estimation of its occurrence time (for a large variety examples see [3,4]). This is
possible by comparing the normalized power spectrum Πs(ω) of the ongoing seismicity to
the critical one given by [2–4]

Πc(ω) =
18

5ω2 − 6 cos ω

5ω2 − 12 sin ω

5ω3 . (9)
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A coincidence between Πs(ω) and Πc(ω) that indicates the proximity to the impending
strong EQ occurrence is characterized by the following criteria (see [3] and Section 5.3 of [4]):

(1) The “average” distance ⟨D⟩ between the curves of Πs(ω) and Πc(ω) of
Equation (9) for ω ≤ π should be ⟨D⟩ < 10−2.

(2) The final approach of the evolving κ1 of seismicity to the value κ1 ≈ 0.070 should
be such that κ1 gradually decreases with time and finally reaches (from above) that of the
critical state, i.e., κ1 = 0.070 (the latter value can be obtained [2,3] by a Taylor expansion of
Equation (9) around ω = 0).

(3) At the coincidence, i.e., when ⟨D⟩ < 10−2, both entropies S and S− of the seismicity
in natural time must be smaller than Su.

(4) Since this process (critical dynamics) is considered to be self-similar, the occurrence
time of the coincidence should not markedly vary upon changing the magnitude threshold
Mthres used in the calculation of seismicity.

(5) The final approach of κ1 (see criterion 2) starts on a date at which the entropy
change ∆S(≡ S − S−) of the seismicity exhibits a local minimum.

For example, in the case of the M9.0 Tohoku EQ in Japan that occurred at 14:46 LT on
11 March 2011, the variability minimum was observed [22] on 5 January 2011 coinciding
with the observation of anomalous variations of the magnetic field of the Earth [33,34] and
the analysis of the subsequent seismicity in the area around the Tohoku epicenter (see,
e.g., [4,35]) showed that in the morning (≈09:00 LT) of 10 March 2011 the above criteria
for coincidence have been reached (Varotsos et al. [8] showed that this estimation can be
improved to 20:00LT on 10 March 2011).

Here, we consider our study area N25.5o

21.5o E122.0o

119.5o shown in Figure 1 and calculate the
evolution of κ1, S, S− and ⟨D⟩ for the seismicity that occurred after the βW,min observed on
5 September 2023. Figure 6 depicts the aforementioned quantities versus the conventional
time for various values of Mthres. We observe that for Mthres = 4.0, Figure 6A, the average
distance ⟨D⟩ never satisfies the first criterion for coincidence since it approaches a minimum
value of ≈0.02 upon the occurrence of an M4.2 EQ almost 4 1

2 hours before the Hualien EQ.
Interestingly, both S and S− are smaller than Su and criterion 5 is satisfied. Increasing the
magnitude threshold to Mthres = 4.3 and 4.4, see Figure 6B,C, respectively, we observe that
all five criteria for coincidence are statisfied on 19 March 2024, i.e., less than two weeks
before the M7.4 Hualien EQ.

Returning now to the case of the M7.6 1999 Chi-Chi EQ, we have a variability min-
imum on 20 August 1999 almost one month before this EQ as already mentioned. The
number of EQs inside our study area N25.5o

21.5o E122.0o

119.5o after 20 August 1999 is very small to
allow a study similar to that presented in the previous paragraph for the case of Hualien
EQ. We only note that upon the occurrence of a M4.1 EQ on 4 September 1999 we obtain
κ1 ≈ 0.06 and both S and S− are smaller than Su.

It is noteworthy that NT is the basis for EQ nowcasting which is the most re-
cent method for seismic risk estimation [36–51]. EQ nowcasting has been introduced
by Rundle et al. [52] based on the concept of NT and may additionally provide useful infor-
mation about the epicenters of future EQs [53–55]. This is achieved when EQ nowcasting is
combined with the identification of variability minima βW,min of the order parameter of
seismicity. Such applications have been made both in regional (Eastern Mediterranean [53]
and Southern California, Mexico and Central America [54]) and global scale [55]. It is in
our future plans to employ EQ nowcasting in a similar fashion for the study of the whole
area of Eastern Asia.
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Figure 6. Results from the study of the seismicity in the area N25.5o

21.5o E122.0o

119.5o shown in Figure 1
since 5 September 2023 when the variability minimum preceding the Hualien EQ has been ob-
served, see Figure 3. The evolution of κ1, S, S− and ⟨D⟩ versus conventional time is shown for
(A) Mthres = 4.0, (B) Mthres = 4.3, and (C) Mthres = 4.4.

6. Conclusions
Natural time analysis enables the introduction of an order parameter of seismicity, the

fluctuation of which exhibits a statistically significant minimum before a major EQ.
Natural time analysis is shown to identify well in advance the two strongest earth-

quakes that occurred in Taiwan during the last 60 years (i.e., the 1999 MW7.6 Chi-Chi and
the 3 April 2024 MW7.4 Hualien EQ).
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