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Long-range correlations in the electric signals that precede rupture
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The Smoluchowski-Chapman-Kolmogorov functional equation is applied to the electric signals that precede
rupture. The results suggest a non-Markovian character of the analyzed data. The rescaled range Hurst and
detrended fluctuation analyses, as well as that related with the “mean distance a walker spanned,” lead to
power-law exponents, which are consistent with the existence of long-range correlations. A “universality” in
the power spectrum characteristics of these signals emerges, if an analysis isnataigethe conventional
time frame, but in the “natural” time domain. Within this frame, it seems that certain power spectrum
characteristics of ion current fluctuations in membrane channels distinguish them from the electric signals
preceding rupture. The latter exhibit a behavior compatible with that expected from a model based on the
random field Ising Hamiltonian at the critical point.
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I. INTRODUCTION of Ref.[6]). Thus, in a double logarithmic plot, the value of
the slopea, resulting from a least-squares fit to a straight
Traditionally, processes are characterized by assumintine, reveals the presence, or not, of long-range correlations.
that correlations decay exponentially. However, it is well In Refs.[3,4], for example, the reasons why conventional
known (e.g., see Refd1,2]) that there is one major excep- scaling analyses cannot be applied reliably to an entire DNA
tion: at the critical point, the exponential decay turns into asequencébut only to subsequencesave been summarized.
power-law decay. . ~ To overcome the difficulty, a method had been developed
. Long range power-law correlations have been found in 7,8], termed detrended fluctuation analyé¥A), which is
wide variety of system§1,2]. As soon as power-law corre- gnecifically adapted to handle problems associated with non-
Iat|?ns are found, they are usually quantified with a “criti- stationary sequences. It is one of the basic aims of the
cal” exponent. present paper to apply this well established method to the

simvi\IISr r\zﬁﬁ"intg:;: i?ﬁ?ﬂis?ﬁepr?geﬁt) 'itcfli\egxsflf' case of electric signals that precede rupture. As an example,
. prop %( )._ (.)’ . we consider the so-called seismic electric signals
where the equality concerns the finite-dimensional distribu-

tions of the procesX(t) on the right- and the left-hand side (SES’.Wh.'Ch are low frequency <1 Hz) changes. of the
of the equatior{not the values of the procés$taving a time electric field of the earth that have been found in Greece

series of stationary increments one can study correlations iL?,lO] and Japari11] to precede earthquakes, with a lead

a self-similar time series applying the statistical tools to alime from several hours to a few mont#s-13}; the relevant

random walk given by the cumulative time series. For theProcess has a finite varianf#0,11,13.
conventional one-dimensional random walk model, a walker Beyond DFA, we also apply here to SES the rescaled
moves either “up”[u(i)= +1] or “down” [u(i)=—1] one  fange Hurst analysikl4,15 as well as that related with the
unit length for each step of the walk. The question, which is‘mean distance a walker spanned16,17. The first two
usually asked3,4], is whether a “walk” displays only short- methods, between others, have been recently used by Mercik
range correlationgas in ann-step Markov chaipor long-  and Weron[18] to study the stochastic origins of the long-
range correlationgas in critical phenomena and other scale-range correlations of ionic current fluctuations in membrane
free “fractal” phenomena The statistical quantity usually channelsICFMC). We clarify that(see Ref[19] and refer-
treated in any walk(e.g., see Ref[5]) is the root-mean- ences thereinsingle ionic channels in a membrane open and
square fluctuatiorF (1) about the average of the displace- close spontaneously in a stochastic way, resulting in current
ment of a quantityAy(l), which is defined byAy(I)=y(l,  and voltage changes, which resemble the realizations of ran-
+1)=y(lg), Wherey(I)EE!zlu(i). This is described by a dom telegraph signals, RTi@ichotomous noise It has been
power law[3,4] shown[20] that the action of membrane-embedded enzymes
depends critically on fluctuations of the membrane potential,
F()~1¢ (1) and that the main source of these fluctuations originates in
the fluctuations of ionic concentrations due to the action of
with @+ 1/2 if there is no characteristic lengthe., if the  jon channels. Note that the SES activities have also an RTS
correlations betweemi(i) and u(j) are power-law long- feature, which, as noticed elsewhé¢i®,21], could be under-
range correlationsWe recall that the case=1/2 represents stood in the context of dynamic phase transitions. As an ex-
the absence of long-range correlatidgasy., see pp. 117-119 ample, Fig. 1 depicts an excerpt of the SES activity recorded
on April 18, 1995(cf. the full record can be found in Ref.
[13]), that preceded the earthquake with magnitude 6.6 that
*Electronic address: pvaro@otenet.gr occurred at Grevena-Kozani on May 13, 1995. This lasted
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FIG. 1. Excerpt of an SES activity, which was recorded on April  FIG. 2. The quantile linek(t) of the SES activity on April 18,
18, 1995 with a sampling frequendy, ;=1 sample/sec. The elec- 1995. The quantilek, are of order frome=0.1 to 0.9 step 0.1
tric field E is measured in mv/km. counting from the bottom to the top of the figure.

for around three and a half hours and was collected with @ver M discrete statest(t) e {&1,&,, . . . ,éu}. These states

sampling ratef ., ,=1 sample/se¢thus we haveN=11900 in the present case of SES activity denote the values of the

data points electric fieldmSE<E,,<(m+1)3E, m=0,... M—1, and
The present paper is organized as follows: In Sec. Il, wahe stochastic process is the measured time sef{es

investigate the stationarity of the aforementioned SES activ=E(t). Let P, (&,,t;; ... ot (@ By, .. =1,...M)

ity, by using the notion of the quantiles introduced by Weronpe the probability that the procegst) is in the statet, at

and coworkerssee Ref[18] and references therginThe  timet,, ... and in the stat€, at timet, . After defining the

non-Markovian character of this signal is shown in Sec. lllcgnditional probability

by using the Smoluchowski-Chapman-Kolmogorov equa-

tion. The Hurst, DFA, and the “mean distance a walker P1|k(§a,tl|§ﬁ,t2; R N S Y

spanned” analyses of the aforementioned example of SES

activity are presented in Secs. IV, V, and VI, respectively. _ Prra(éa tiiépta 36, kt D) @
Section VIl is reserved for the analysis in the “natural time” Pulép.to .. 36, 1)

domain(explained in detail in Refl22]), of both data sets, o _ _
i.e., SES activities and ICFMC. The conclusions are summathe Markovianity of the proces(t) is defined by

rized in Sec. VIII.
Plln(gavt|§ﬂatl; S ;gyvtn)
Il. THE STATIONARITY OF THE SIGNAL =Py(&a.t|ép t) VI>t> . >t (3

This was studied, as mentioned, by using the notion of The so-called Smoluchowski-Chapman-Kolmogorov
quantiles[18]. A quantile of ordere e (0,1] is such a value (SCK) functional equation

k.(t) that the probability of the recorded signal being less
thank, at the moment is equal toe. Following the proce- Pii(&a A&t
dure of Ref.[18], we cut the whole record into smaller sub-

records (of length 100 § and the resulting quantiles are u

shown in Fig. 2. Since these lines are parallel to the time axis  — 2‘5 P1j1(€a tlép ) P1a(8p.tal €y t2)

(time invarianj, we may assumgl8] that the investigated gt

time series is stationary and has constant mean and variance Vt>t;>t,, (4)

within the examined limits. We clarify that the stationarity
indicated by quantile lines can be proved mathematicallyesults from the definition) and(3), and from the standard
(see Ref.[18] and references therginstationarity can be Properties of probability distributionsee Ref[19] and ref-
easily observed in a large time scale although locally theéerences therejnThe stochastic proceggt), which does not
time series seems to be nonsta‘[ionary_ Satisfy either the basic definition, E@) or the SCK EQ(4)
is not Markovian.
The corresponding experimental electric field probability
density function(PDPF (obtained in a way similar to that
In order to test the Markovianity of an SES activity, we followed by Mercik et al. [18], in their Fig. 2 reveals a
use the Smoluchowski-Chapman-Kolmogorov functionalbimodal feature(with finite variation and standard devia-
equation, which presents the most basic test of Markoviation), which is evident in Fig. 1. The two states probabilities
character of finite stochastic chains. This has been used t¥,(m,t;n,0)=P,(m,t;;n,t,), with m,n=1,2, (1. upper
Fulinski et al. [19] in the relevant study of the ICFMC. level, 2: lower leve), t=t; —1t, (stationary process, see Sec.
Following Ref.[19], we consider a stochastic procégs) II), were calculated in a way similar to that followed for

lIl. TEST OF MARKOVIANITY
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FIG. 3. Field-field conditional probabilitieB; ;(t) (solid curve
andP, ,(t) (dotted curvefor the RTS(dichotomoug representation
(M=2) of the SES activity mentioned in Fig. 1. The solid and , ity mentioned in Fig. 1; the slope of this straight line leads to
dotted straight lines depict, respectively, thg(1) andP(2) for e Hyrst exponent. The upper line(crosses corresponds to
randomly generated datélarkov procesp M(L) (in mV/km) and its slope leads to the exponerit (see the

finding stationary probabilitie®,(m), i.e., by counting19] 0.
the relative numbers of pairs of states separated by time in- ) . . . .
tervalt, such thaE(t,) e state m, and(t,) e staten. Thus, (R/S). This compares the correlations in the time series mea-
the field-field conditional  probabilites P, (1) sured at different time scales. The results of such an analysis

=Pyp(mtynt,) were determined from P (t) @€ given in the lower curve of Fig. 5. The value of the Hurst

=P,(m,t;n,0)/P1(n). The results foP; 4(t) andP, At) are exp_onentH is found to be H_= O._86i_0_.09. _(The errors
shown in Fig. 3, along with straight liné®,(1) andP,(2); mainly come from the uncertainty in fitting either the origi-
the latter two correspond to randomly generated Markoviarnal signal or the dichotomous ondhis is far from the value
RTS (dichotomou} series (control datd and the relevant H=1/2, which suggests that the changes in the values of a
volatility, given by Ref.[23] P,(1—P;)/N, results less than time series are purely randofand hence uncorrelated with
1073, If D, 4(t) denotes the difference between the left- andeach of other Recall that, when 1RH<1 (which is our
right-hand sides of the SCK E) (for a time shift 1 §, the  case, the time series is called persistent and it has a long
corresponding function calculated from the functions de-memory property, e.g., see REf5] (in this case the increase
picted in Fig. 3, is presented in Fig. 4. An inspection of thein the values of a series is more likely to be followed by an
latter figure shows that the deviations from the SCK relationincrease, and conversely, the decrease is more likely to be
for the experimental SES seri@spper curveare drastically  followed by a decreaseThe fractal dimension is found
larger than those for the control Markovian seriesttom  from the relationd=2—H which, after considering the

curve). Such a result suggedts9] the non-Markovian char-  4¢orementioned value. leads tal=1.14+ 0.09.
acter of the analyzed data. ’

FIG. 5. The rescaled range analy§i®/S) (diamonds, the lower
line) as a function of the time-lag\t (log-log ploy for the SES

IV, HURST ANALYSIS V. DETRENDED FLUCTUATION ANALYSIS (DFA)

Away of studying correlations in a time series is provided Advantages of DFA over conventional methods.g.,

by the Hurst analysifL4] known as rescaled range analysis SPectral analysis and Hurst analysise that it permits the
detection of intrinsic self-similarity embedded in a seemingly

0.02 nonstationary time series, and also avoids the spurious detec-

0.015 1 tion of apparent self-similarity, which may be an artifact of
extrinsic trendg7,8,3,4. A recent investigation of the ques-

0.01 M/\’N\J\M o [m/W\/ tion of whether DFA does provide insight in the long-time

behavior that goes beyond the possibilities of spectral analy-
sis has been discussed in detail in R&#].

We first divide a series of lengtN into N/l nonoverlap-
ping fragments, each dfobservations, and determine a local
trend of the subseries. Next we define the detrended process
in every fragment denoted by,(n) as the difference be-
tween the original value of the series and the local trend. If
2 _ o o 3o the time series was recorded with the frequeffigy,, we

t(s) calculate the mean variance of the detrended pro€ggs,

FIG. 4. The deviationD, (t) from the SCK relation. Upper 1 N/L
curve: experimental SES time series mentioned in Fig. 1; bottom FS(AUZ N E yé(n% (5)
curve: randomly generated datdarkov process [=1n=1
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FIG. 6. The dependence Bf; (in mV/km) on the time-lag\t in

the DFA of the SES activity mentioned in Fig. 1. garded as the variance evolution of a random walker’s total
displacement mapped from the time serk@). From the

whereAt=1/fq,,. The results obtained by such a procedureslope of the log-log plot oM (L) versusL, upon considering

[25] for the aforementioned SES activity are depicted in Figthe relation M(L)«L®', we can determinez’. Such an

6. The slope of this log-log pldiafter making a least-squares analysis leads to the upper straight line of Fig. 5, which gives

fit to a single straight ling leads to the valuex~0.95  ,’'=0.87+0.12. This value also suggests long-range corre-
+0.01(the estimation error becomes0.04 upon disregard- |ations.

ing points related with eitheAt<<10 s and/orAt=200 s).
This reveals long-range correlations, as mentioned above in
the discussion of Eq1). Note that if, alternatively26], we

fit the data with two straight line@vhich are depicted in Fig. The natural timey serves as an index for the occurrence
6) the corresponding values are=1.19+0.02 and « of an event(reduced by the total number of events, thus
=0.88+0.02 for the short times and long timé@se., smaller  being smaller than, or equal to, unify22]. Let us, therefore,
than around 30 s and larger tharB0 s) respectively. The denote byQ, the duration of thekth transient pulse of the
power spectrum expone®(f)~1/f# is found from the re-  dichotomous series of an SES activity compriset gfulses
lation [8] B=2a—1, thus we obtainB~1.4 andB~0.8, (Fig. 7). The natural timey is introduced by ascribing to this
respectively. The two scaling regions can be interpreted agulse the valuey,=k/K. If we now consider the evolution
indicating the presence of two different interactions: short(y,,Q,), we can define the continuous functiéifw) (this
time interactions, fot<30 s, which are very strong, and should not be confused with the discrete Fourier transform
long-range interactions, a little weaker and persistent. Note

that Antalet al. [27] recently studied the PDF of the rough- K k

ness, i.e., of the temporal variance, offlihoise signals. F(w):szl leXF{in), 8
They suggest that foB=<1/2 the scaled PDFs in both peri- -

odic and the nonperiodic cases are Gaussian, butgfor where w=2m. Since the quantityp(=w/2) is related

>1/2 they differ from the Gaussian and from each othery the natural time, it is termedatural frequency We
both deviations increase with growing

normalizeF (w) by dividing it by F(0),

VII. ANALYSIS IN THE “NATURAL TIME” DOMAIN

VI. THE EXPONENT FROM THE K k
“MEAN DISTANCE A WALKER SPANNED” 2 Qk eX[{in) N K
k=1 .
The time series can be analyzed using the quaMit.), P(w)= K :kgl Pk ex% lw K) . (9
the mean distance a walker spanrj&@,28,17 within time 2 Qy
L. If we denote k=1
_ J where pk=Qk/2r'f=lQn. Thus, the quantitiep, describe a
W(j)= 2 [X(t)=Xapel, (6)  “probability” to observe the transient at natural timg, .
t=1 . .
From Eq.(9), we can obtain the normalized power spectrum
we get II(w)=|P(w)|? For natural frequencieg less than 0.5,
IT(w) or I1(¢) reduce to a characteristic function for the
M(L)=(IW(j)—W(j+L)[);, (7)  probability distribution p, in the context of probability

theory. The procedure of reading a series of electric pulses in
whereX,, corresponds to the average over the whole timethe natural time domain is depicted in Fig. 7. We now apply
series,j=1,... N—L, and(); denotes the average over this procedure to the SES activities related,29 to the
From a physics viewpoint, the quantit (L) may be re- three strongest earthquakes that occurred in Greece since
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[ e — T studied by means of the so-call@dfunction (see p. 288 of
ol ] Ref. [32]) when following a procedure similar to that dis-
cussed in Ref[33]. Third, in the region & ¢=<1, the solid
50 | 1 line related with the ICFMC seems to ligot far from, bu}
systematically lower than those of the SES activitisse
O 1 also the Appendix
oxao
VIIl. CONCLUSIONS
20 Using methods of statistical physics, we found that SES
10l ] activities exhibit long-range correlatiofimemory. Specifi-
cally, when applying a test based on the Smoluchowski-
0 —7o7 o3 07 o5 o5 O 08 09 Chapman-Kolmogorov functional equation, the results sug-
X gest the non-Markovian character of the SES data. The

quantiles procedure was used for the study of the stationarity
FIG. 8. The SES activity mentioned in Fig. 1 read in “natural of the signal. The rescaled range Hurst and detrended fluc-
time.” tuation analyses led to power-law exponents that indicate
long-range correlations. This result was also confirmed by
1988, i.e., on May 13, 199&with magnitudeM =6.6), June means of the exponent resulted from the analysis of the
15, 1995 M=6.5), and July 26, 2001M =6.6). Once an “mean distance a walker spanned.” Furthermore, the “natu-
SES activity has been recorded, we can read it in the naturahl” time domain analysis was applied to the SES activities
time domain(for example, see Fig. 8 for the SES activity as well as to the ICFMC. Within such a frame, the following
mentioned in Fig. L and then proceed to its analysis. The two main conclusions hold for certain power spectrum char-
same type of analysis was applied to the ICFMC data reacteristics of the SES activities, namely, thHi( ¢) values
ported in Ref.[19] and subsequently analyzed in Refs. versus¢: First, they lie above those of the ICFMC in the
[18,26,30,31 Figure 9 depictdI(¢) for the SES activities region 0< ¢<1. Second, in the ranges0¢4<0.5, they are
along with that corresponding to the dichotomous signal otompatible with those calculatedee the Appendixwhen
the ICFMC data studied in Ref§18,30. An inspection of adopting a model to describe criticality.
this figure shows the following three facts: First, foatural
frequenciessmaller than 0.5see the inset of Fig.)9 the ACKNOWLEDGMENTS
curves labeled “SES activities,” which correspond to the )
I1(¢) values of the SES activities, scatter around the solid Ve express our sincere thanks to Professor K. Weron and
curve that has been theoretically estimateee the Appen- Dr.'S. Mercik for sending us a lot of usefull mformatlon on
dix). We emphasize that this occurs only if we consider thetheir work as well as for making several fruitful suggestions.
totality of the SES activity, and we do not, e.g., omit a Sig_Furthermore, We_thank Pro_fessor P.N.R_. Usherwood an_d Dr.
nificant portion of its initiation. Second, the curves related tol- Mellor for providing us with the experimental data of ion
the SES activities cross at a point withgavalue very close ~current through high-conductance locust potenual chgnnel.
to unity, i.e.,p~1.05. How this point is approached can be We also gratefully acknowledge several stimulating discus-
sions with Professor E. Manousakis.
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APPENDIX: THE NATURAL POWER SPECTRUM

09}

o8 OF SES ACTIVITIES

N The Taylor expansion ofl (w) reveals that

0.8 (w)=1— kjw’+ kr0*+ k30®+ kwl+ ..., (A1)
g 05}

where k;=(x?)—(x)? is the variance ofy, and (x")
= E,’2'=1(Xk)”pk are the moments of the distribution pf The
most useful quantity aroun@d=_0 is the variancec, of the
natural time distribution. This is so, because the various nor-
malized power spectran Fig. 9) are grouped together as
or ¢ tend to 0 depending on their; values. The value of;

0.4}

031

0.2}

01 biological membrane

0 0z 04 06 08 1 12 14 16 18 2 that reproduces the ICFMC data is 0.@80.003, while for

0

natralfiequency ¢ the SES activities is 0.0760.005.
FIG. 9. The normalized power Specmqs) for the three SES Indenta“on eXperImentS even In Slmple lonic CryStals

activities (dotted line3 mentioned in the text along with that of the Showed that electric signals are emitted, without the action of
ICFMC (labeled biological membrane, lower solid curvhe up- ~ any external electric field, due @ormation and motion of

per solid curve corresponds to the theoretical estimation discussqapint and linear defectg34]. Independent laboratory mea-
in the Appendix. surementd 35] revealed that, as the glass transition is ap-
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proached, a polarization time series is emitted which ariseives” (i.e., for a durationz,).

from the reorientation process of electric dipoles; this pro- The RTS feature of an SES activity might be understood
cess includes a large number of atoife®operativity. A in the following context: The duratio® of a pulse is just the
comparison shows that the feature of the latter time series isum of n such identical unitQ==3_,7;. Under this as-
strikingly similar[12] to the measured SES activities. This sumption, the duratio®, of the kth pulse, in an SES activ-
similarity is reminiscent of the pressure stimulated currentsty, follows the gamma distribution with a mean lifetime
model[6], which suggests that, upon a gradual variation ofn, 7, and variancen,75 (e.g., see Lemma 8.1.6.5. of Ref.
the pressuréstress P on a solid, transient electric signals are [39]): heren, is the number of exponential lifetime backup
emitted, from the(re)orientation of electric dipoleformed  ynits that act cooperatively. If at the critical point, backup
due to disordey when approaching eritical pressure ynits were available at thkth current emission, then the
(stress P obeying the condition dP/dt);v™kT  average number of backup units for the 1 emission would
=—1/7(P,), wherev™ is the migration volume, defined as pe the same. This assumption is reminiscent of the aspect
v™=(dg™dP)1, g™ being the Gibbs migration energy and that the reorientation of a spin, in the random-field Ising
7(P¢;) the relaxation time for thdre)orientation process. Hamiltonian, will cause on average one more spin to flip at

The values ob™ associated with SES generation should ex-the critical point[40]. Under these assumptions, one finally
ceed the mean atomic volume by orders of magnitude, angptains[22]

this entails that the relevarite)orientation process should

involve the motion of a large number of “atomgSee p. 404

of Ref.[6]). Thus, the laboratory measuremef@§] fortify 18 6cosw 12sinw

the suggestiofi6,12] that the emission of the SES activities (w)= 502 502 503 (A2)
could be discussed in the frame of the theorydghamic

phase transitionsThe very stochastic nature of the relax-

ation process has been repeatedly discussed in the literatuesxpanding Eq.(A2) aroundw=0, we find k;=0.070. An
(see p. 350 of Ref.36] and references therein; other sugges-inspection of the inset of Fig. 9 shows that, for the region of
tions have been reviewed in R¢B7], while recent illumi-  natural frequencies€ ¢=<0.5, wherell(¢) should be con-
nating aspects have been forwarded in R&8]). A stochas- sidered as a characteristic function for,the experimental
tic analysis was based on the concept of clusters, theesults for the SES activities agree favorably with the theo-
structural rearrangement of which develops in tii88]. Ac-  retical estimation of Eq(A2).

cording to this analysis the exponential relaxation of the po- The latter fact, i.e., that the SES activities exhibit a be-
larization is arrested at a random time variableand the havior compatible with a model based on the random-field
instantaneous orientation reached at this instant is “frozen’lsing Hamiltonian at the critical point, while the; value

at a value exp{ B,7;) whereB;=b=const(see Fig. 11.19 of that reproduces the ICFMC data 0.080+0.003) exceeds
Ref. [36]). Assuming thatz; itself follows an exponential (slightly, but by an amount larger than the experimental er-
distribution, with a time constanty<r=7(P,,), an almost ror) the aforementioned or@e., x;=0.070), which resulted
constant current would be expected for as long as this unfrom Eq. (A2), is currently under detailed investigation.
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