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Long-range correlations in the electric signals that precede rupture

P. A. Varotsos,* N. V. Sarlis, and E. S. Skordas
Solid State Section, Physics Department, University of Athens Panepistimiopolis, Zografos, Athens 157 84, Greece

~Received 10 March 2002; published 12 July 2002!

The Smoluchowski-Chapman-Kolmogorov functional equation is applied to the electric signals that precede
rupture. The results suggest a non-Markovian character of the analyzed data. The rescaled range Hurst and
detrended fluctuation analyses, as well as that related with the ‘‘mean distance a walker spanned,’’ lead to
power-law exponents, which are consistent with the existence of long-range correlations. A ‘‘universality’’ in
the power spectrum characteristics of these signals emerges, if an analysis is made~not in the conventional
time frame, but! in the ‘‘natural’’ time domain. Within this frame, it seems that certain power spectrum
characteristics of ion current fluctuations in membrane channels distinguish them from the electric signals
preceding rupture. The latter exhibit a behavior compatible with that expected from a model based on the
random field Ising Hamiltonian at the critical point.
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I. INTRODUCTION

Traditionally, processes are characterized by assum
that correlations decay exponentially. However, it is w
known ~e.g., see Refs.@1,2#! that there is one major excep
tion: at the critical point, the exponential decay turns into
power-law decay.

Long range power-law correlations have been found i
wide variety of systems@1,2#. As soon as power-law corre
lations are found, they are usually quantified with a ‘‘cri
cal’’ exponent.

We recall that a stochastic processX(t) is called self-
similar with indexH if it has the propertyX(lt)5lHX(t),
where the equality concerns the finite-dimensional distri
tions of the processX(t) on the right- and the left-hand sid
of the equation~not the values of the process!. Having a time
series of stationary increments one can study correlation
a self-similar time series applying the statistical tools to
random walk given by the cumulative time series. For
conventional one-dimensional random walk model, a wal
moves either ‘‘up’’@u( i )511# or ‘‘down’’ @u( i )521# one
unit length for each step of the walk. The question, which
usually asked@3,4#, is whether a ‘‘walk’’ displays only short-
range correlations~as in ann-step Markov chain! or long-
range correlations~as in critical phenomena and other sca
free ‘‘fractal’’ phenomena!. The statistical quantity usually
treated in any walk~e.g., see Ref.@5#! is the root-mean-
square fluctuationF( l ) about the average of the displac
ment of a quantityDy( l ), which is defined byDy( l )5y( l 0

1 l )2y( l 0), wherey( l )[( i 51
l u( i ). This is described by a

power law@3,4#

F~ l !; l a ~1!

with aÞ1/2 if there is no characteristic length~i.e., if the
correlations betweenu( i ) and u( j ) are power-law long-
range correlations!. We recall that the casea51/2 represents
the absence of long-range correlations~e.g., see pp. 117–11
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of Ref. @6#!. Thus, in a double logarithmic plot, the value o
the slopea, resulting from a least-squares fit to a straig
line, reveals the presence, or not, of long-range correlatio

In Refs.@3,4#, for example, the reasons why convention
scaling analyses cannot be applied reliably to an entire D
sequence~but only to subsequences! have been summarized
To overcome the difficulty, a method had been develop
@7,8#, termed detrended fluctuation analysis~DFA!, which is
specifically adapted to handle problems associated with n
stationary sequences. It is one of the basic aims of
present paper to apply this well established method to
case of electric signals that precede rupture. As an exam
we consider the so-called seismic electric sign
~SES!,which are low frequency (<1 Hz) changes of the
electric field of the earth that have been found in Gree
@9,10# and Japan@11# to precede earthquakes, with a lea
time from several hours to a few months@9–13#; the relevant
process has a finite variance@10,11,13#.

Beyond DFA, we also apply here to SES the resca
range Hurst analysis@14,15# as well as that related with th
‘‘mean distance a walker spanned’’@16,17#. The first two
methods, between others, have been recently used by Me
and Weron@18# to study the stochastic origins of the long
range correlations of ionic current fluctuations in membra
channels~ICFMC!. We clarify that~see Ref.@19# and refer-
ences therein! single ionic channels in a membrane open a
close spontaneously in a stochastic way, resulting in cur
and voltage changes, which resemble the realizations of
dom telegraph signals, RTS~dichotomous noise!. It has been
shown@20# that the action of membrane-embedded enzym
depends critically on fluctuations of the membrane potent
and that the main source of these fluctuations originate
the fluctuations of ionic concentrations due to the action
ion channels. Note that the SES activities have also an R
feature, which, as noticed elsewhere@12,21#, could be under-
stood in the context of dynamic phase transitions. As an
ample, Fig. 1 depicts an excerpt of the SES activity recor
on April 18, 1995~cf. the full record can be found in Ref
@13#!, that preceded the earthquake with magnitude 6.6
occurred at Grevena-Kozani on May 13, 1995. This las
©2002 The American Physical Society02-1
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for around three and a half hours and was collected wit
sampling ratef exp51 sample/sec~thus we haveN511 900
data points!.

The present paper is organized as follows: In Sec. II,
investigate the stationarity of the aforementioned SES ac
ity, by using the notion of the quantiles introduced by Wer
and coworkers~see Ref.@18# and references therein!. The
non-Markovian character of this signal is shown in Sec.
by using the Smoluchowski-Chapman-Kolmogorov eq
tion. The Hurst, DFA, and the ‘‘mean distance a walk
spanned’’ analyses of the aforementioned example of S
activity are presented in Secs. IV, V, and VI, respective
Section VII is reserved for the analysis in the ‘‘natural tim
domain~explained in detail in Ref.@22#!, of both data sets
i.e., SES activities and ICFMC. The conclusions are sum
rized in Sec. VIII.

II. THE STATIONARITY OF THE SIGNAL

This was studied, as mentioned, by using the notion
quantiles@18#. A quantile of ordereP(0,1# is such a value
ke(t) that the probability of the recorded signal being le
thanke at the momentt is equal toe. Following the proce-
dure of Ref.@18#, we cut the whole record into smaller su
records ~of length 100 s!, and the resulting quantiles ar
shown in Fig. 2. Since these lines are parallel to the time a
~time invariant!, we may assume@18# that the investigated
time series is stationary and has constant mean and vari
within the examined limits. We clarify that the stationari
indicated by quantile lines can be proved mathematic
~see Ref.@18# and references therein!; stationarity can be
easily observed in a large time scale although locally
time series seems to be nonstationary.

III. TEST OF MARKOVIANITY

In order to test the Markovianity of an SES activity, w
use the Smoluchowski-Chapman-Kolmogorov functio
equation, which presents the most basic test of Markov
character of finite stochastic chains. This has been use
Fuliński et al. @19# in the relevant study of the ICFMC.

Following Ref.@19#, we consider a stochastic processj(t)

FIG. 1. Excerpt of an SES activity, which was recorded on Ap
18, 1995 with a sampling frequencyf exp51 sample/sec. The elec
tric field E is measured in mV/km.
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over M discrete states:j(t)P$j1 ,j2 , . . . ,jM%. These states
in the present case of SES activity denote the values of
electric fieldmdE,Em,(m11)dE, m50, . . . ,M21, and
the stochastic process is the measured time seriesj(t)
5E(t). Let Pk(ja ,t1 ; . . . ;jg ,tk)(a,b,g, . . . 51, . . .M )
be the probability that the processj(t) is in the stateja at
time t1 , . . . and in the statejg at timetk . After defining the
conditional probability

P1uk~ja ,t1ujb ,t2 ; . . . ;jg ,tk11!

5
Pk11~ja ,t1 ;jb ,t2 . . . ;jg ,tk11!

Pk~jb ,t2 . . . ;jg ,tk11!
, ~2!

the Markovianity of the processj(t) is defined by

P1un~ja ,tujb ,t1 ; . . . ;jg ,tn!

5P1u1~ja ,tujb ,t1!,;t.t1. . . . .tn. ~3!

The so-called Smoluchowski-Chapman-Kolmogor
~SCK! functional equation,

P1u1~ja ,tujg ,t2!

5 (
jb5j1

jM

P1u1~ja ,tujb ,t1!P1u1~jb ,t1ujg ,t2!

;t.t1.t2, ~4!

results from the definitions~2! and~3!, and from the standard
properties of probability distributions~see Ref.@19# and ref-
erences therein!. The stochastic processj(t), which does not
satisfy either the basic definition, Eq.~3! or the SCK Eq.~4!
is not Markovian.

The corresponding experimental electric field probabil
density function~PDF! ~obtained in a way similar to tha
followed by Mercik et al. @18#, in their Fig. 2! reveals a
bimodal feature~with finite variation and standard devia
tion!, which is evident in Fig. 1. The two states probabiliti
P2(m,t;n,0)[P2(m,t1 ;n,t2), with m,n51,2, ~1: upper
level, 2: lower level!, t5t12t2 ~stationary process, see Se
II !, were calculated in a way similar to that followed fo

l FIG. 2. The quantile lineske(t) of the SES activity on April 18,
1995. The quantileske are of order frome50.1 to 0.9 step 0.1
counting from the bottom to the top of the figure.
2-2
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LONG-RANGE CORRELATIONS IN THE ELECTRIC . . . PHYSICAL REVIEW E66, 011902 ~2002!
finding stationary probabilitiesP1(m), i.e., by counting@19#
the relative numbers of pairs of states separated by time
terval t, such thatE(t1)P state m, andE(t2)P staten. Thus,
the field-field conditional probabilities Pm,n(t)
[P1u1(m,t1un,t2) were determined from Pm,n(t)
5P2(m,t;n,0)/P1(n). The results forP1,1(t) andP2,2(t) are
shown in Fig. 3, along with straight linesP1(1) andP1(2);
the latter two correspond to randomly generated Markov
RTS ~dichotomous! series ~control data! and the relevant
volatility, given by Ref.@23# P1(12P1)/N, results less than
1023. If D1,1(t) denotes the difference between the left- a
right-hand sides of the SCK Eq.~4! ~for a time shift 1 s!, the
corresponding function calculated from the functions d
picted in Fig. 3, is presented in Fig. 4. An inspection of t
latter figure shows that the deviations from the SCK relat
for the experimental SES series~upper curve! are drastically
larger than those for the control Markovian series~bottom
curve!. Such a result suggests@19# the non-Markovian char-
acter of the analyzed data.

IV. HURST ANALYSIS

A way of studying correlations in a time series is provid
by the Hurst analysis@14# known as rescaled range analys

FIG. 3. Field-field conditional probabilitiesP1,1(t) ~solid curve!
andP2,2(t) ~dotted curve! for the RTS~dichotomous! representation
(M52) of the SES activity mentioned in Fig. 1. The solid a
dotted straight lines depict, respectively, theP1(1) andP1(2) for
randomly generated data~Markov process!.

FIG. 4. The deviationD1,1(t) from the SCK relation. Upper
curve: experimental SES time series mentioned in Fig. 1; bot
curve: randomly generated data~Markov process!.
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(R/S). This compares the correlations in the time series m
sured at different time scales. The results of such an ana
are given in the lower curve of Fig. 5. The value of the Hu
exponent H is found to be H50.8660.09. ~The errors
mainly come from the uncertainty in fitting either the orig
nal signal or the dichotomous one.! This is far from the value
H51/2, which suggests that the changes in the values
time series are purely random~and hence uncorrelated wit
each of other!. Recall that, when 1/2,H,1 ~which is our
case!, the time series is called persistent and it has a lo
memory property, e.g., see Ref.@15# ~in this case the increas
in the values of a series is more likely to be followed by
increase, and conversely, the decrease is more likely to
followed by a decrease!. The fractal dimensiond is found
from the relation d522H which, after considering the
aforementionedH value, leads tod51.1460.09.

V. DETRENDED FLUCTUATION ANALYSIS „DFA…

Advantages of DFA over conventional methods~e.g.,
spectral analysis and Hurst analysis! are that it permits the
detection of intrinsic self-similarity embedded in a seeming
nonstationary time series, and also avoids the spurious de
tion of apparent self-similarity, which may be an artifact
extrinsic trends@7,8,3,4#. A recent investigation of the ques
tion of whether DFA does provide insight in the long-tim
behavior that goes beyond the possibilities of spectral an
sis has been discussed in detail in Ref.@24#.

We first divide a series of lengthN into N/ l nonoverlap-
ping fragments, each ofl observations, and determine a loc
trend of the subseries. Next we define the detrended pro
in every fragment denoted byyd(n) as the difference be
tween the original value of the series and the local trend
the time series was recorded with the frequencyf exp, we
calculate the mean variance of the detrended processFd

2( l ),

Fd
2~Dt !5

1

N (
l 51

N/ l

(
n51

l

yd
2~n!, ~5!m

FIG. 5. The rescaled range analysis^R/S& ~diamonds, the lower
line! as a function of the time-lagDt ~log-log plot! for the SES
activity mentioned in Fig. 1; the slope of this straight line leads
the Hurst exponentH. The upper line~crosses! corresponds to
M (L) ~in mV/km! and its slope leads to the exponenta8 ~see the
text!.
2-3
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whereDt5 l / f exp. The results obtained by such a procedu
@25# for the aforementioned SES activity are depicted in F
6. The slope of this log-log plot~after making a least-square
fit to a single straight line! leads to the valuea'0.95
60.01~the estimation error becomes60.04 upon disregard
ing points related with eitherDt<10 s and/orDt>200 s).
This reveals long-range correlations, as mentioned abov
the discussion of Eq.~1!. Note that if, alternatively@26#, we
fit the data with two straight lines~which are depicted in Fig
6! the corresponding values area.1.1960.02 and a
.0.8860.02 for the short times and long times~i.e., smaller
than around 30 s and larger than;30 s) respectively. The
power spectrum exponentS( f );1/f b is found from the re-
lation @8# b52a21, thus we obtainb'1.4 andb'0.8,
respectively. The two scaling regions can be interpreted
indicating the presence of two different interactions: sh
time interactions, fort<30 s, which are very strong, an
long-range interactions, a little weaker and persistent. N
that Antalet al. @27# recently studied the PDF of the rough
ness, i.e., of the temporal variance, of 1/f b noise signals.
They suggest that forb<1/2 the scaled PDFs in both per
odic and the nonperiodic cases are Gaussian, but fob
.1/2 they differ from the Gaussian and from each oth
both deviations increase with growinga.

VI. THE EXPONENT FROM THE
‘‘MEAN DISTANCE A WALKER SPANNED’’

The time series can be analyzed using the quantityM (L),
the mean distance a walker spanned@16,28,17# within time
L. If we denote

W~ j !5(
t51

j

@X~ t !2Xave#, ~6!

we get

M ~L !5^uW~ j !2W~ j 1L !u& j , ~7!

whereXave corresponds to the average over the whole ti
series,j 51, . . . ,N2L, and ^& j denotes the average overj.
From a physics viewpoint, the quantityM (L) may be re-

FIG. 6. The dependence ofFd ~in mV/km! on the time-lagDt in
the DFA of the SES activity mentioned in Fig. 1.
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garded as the variance evolution of a random walker’s to
displacement mapped from the time seriesX(t). From the
slope of the log-log plot ofM (L) versusL, upon considering
the relation M (L)}La8, we can determinea8. Such an
analysis leads to the upper straight line of Fig. 5, which giv
a850.8760.12. This value also suggests long-range cor
lations.

VII. ANALYSIS IN THE ‘‘NATURAL TIME’’ DOMAIN

The natural timex serves as an index for the occurren
of an event~reduced by the total number of events, th
being smaller than, or equal to, unity! @22#. Let us, therefore,
denote byQk the duration of thekth transient pulse of the
dichotomous series of an SES activity comprised ofK pulses
~Fig. 7!. The natural timex is introduced by ascribing to this
pulse the valuexk5k/K. If we now consider the evolution
(xk ,Qk), we can define the continuous functionF(v) ~this
should not be confused with the discrete Fourier transfor!.

F~v!5 (
k51

K

Qk expS iv
k

K D , ~8!

where v52pf. Since the quantityf([v/2p) is related
with the natural time, it is termednatural frequency. We
normalizeF(v) by dividing it by F(0),

F~v!5

(
k51

K

Qk expS iv
k

K D
(
k51

K

Qk

5 (
k51

N

pk expS iv
k

K D , ~9!

wherepk5Qk /(n51
K Qn . Thus, the quantitiespk describe a

‘‘probability’’ to observe the transient at natural timexk .
From Eq.~9!, we can obtain the normalized power spectru
P(v)5uF(v)u2. For natural frequenciesf less than 0.5,
P(v) or P(f) reduce to a characteristic function for th
probability distribution pk in the context of probability
theory. The procedure of reading a series of electric pulse
the natural time domain is depicted in Fig. 7. We now ap
this procedure to the SES activities related@10,29# to the
three strongest earthquakes that occurred in Greece s

FIG. 7. How a dichotomous series of pulses can be read
‘‘natural time’’; the latter serves as an index of the occurrence
each pulse~reduced by the total number of pulses!, while the am-
plitude is proportional to the duration of each electric pulse.
2-4
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LONG-RANGE CORRELATIONS IN THE ELECTRIC . . . PHYSICAL REVIEW E66, 011902 ~2002!
1988, i.e., on May 13, 1995~with magnitudeM56.6), June
15, 1995 (M56.5), and July 26, 2001 (M56.6). Once an
SES activity has been recorded, we can read it in the nat
time domain~for example, see Fig. 8 for the SES activi
mentioned in Fig. 1! and then proceed to its analysis. Th
same type of analysis was applied to the ICFMC data
ported in Ref. @19# and subsequently analyzed in Re
@18,26,30,31#. Figure 9 depictsP(f) for the SES activities
along with that corresponding to the dichotomous signa
the ICFMC data studied in Refs.@18,30#. An inspection of
this figure shows the following three facts: First, fornatural
frequenciessmaller than 0.5~see the inset of Fig. 9!, the
curves labeled ‘‘SES activities,’’ which correspond to t
P(f) values of the SES activities, scatter around the so
curve that has been theoretically estimated~see the Appen-
dix!. We emphasize that this occurs only if we consider
totality of the SES activity, and we do not, e.g., omit a s
nificant portion of its initiation. Second, the curves related
the SES activities cross at a point with af value very close
to unity, i.e.,f'1.05. How this point is approached can

FIG. 8. The SES activity mentioned in Fig. 1 read in ‘‘natur
time.’’

FIG. 9. The normalized power spectraP(f) for the three SES
activities~dotted lines! mentioned in the text along with that of th
ICFMC ~labeled biological membrane, lower solid curve!. The up-
per solid curve corresponds to the theoretical estimation discu
in the Appendix.
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studied by means of the so-calledb-function ~see p. 288 of
Ref. @32#! when following a procedure similar to that dis
cussed in Ref.@33#. Third, in the region 0<f<1, the solid
line related with the ICFMC seems to lie~not far from, but!
systematically lower than those of the SES activities~see
also the Appendix!.

VIII. CONCLUSIONS

Using methods of statistical physics, we found that S
activities exhibit long-range correlations~memory!. Specifi-
cally, when applying a test based on the Smoluchows
Chapman-Kolmogorov functional equation, the results s
gest the non-Markovian character of the SES data. T
quantiles procedure was used for the study of the stationa
of the signal. The rescaled range Hurst and detrended fl
tuation analyses led to power-law exponents that indic
long-range correlations. This result was also confirmed
means of the exponent resulted from the analysis of
‘‘mean distance a walker spanned.’’ Furthermore, the ‘‘na
ral’’ time domain analysis was applied to the SES activit
as well as to the ICFMC. Within such a frame, the followin
two main conclusions hold for certain power spectrum ch
acteristics of the SES activities, namely, theirP(f) values
versusf: First, they lie above those of the ICFMC in th
region 0<f<1. Second, in the range 0<f<0.5, they are
compatible with those calculated~see the Appendix! when
adopting a model to describe criticality.
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APPENDIX: THE NATURAL POWER SPECTRUM
OF SES ACTIVITIES

The Taylor expansion ofP(v) reveals that

P~v!512k1v21k2v41k3v61k4v81 . . . , ~A1!

where k15^x2&2^x&2 is the variance ofx, and ^xn&
5(k51

N (xk)
npk are the moments of the distribution ofx. The

most useful quantity aroundv50 is the variancek1 of the
natural time distribution. This is so, because the various n
malized power spectra~in Fig. 9! are grouped together asv
or f tend to 0 depending on theirk1 values. The value ofk1
that reproduces the ICFMC data is 0.08060.003, while for
the SES activities is 0.07060.005.

Indentation experiments even in simple ionic cryst
showed that electric signals are emitted, without the action
any external electric field, due to~formation and motion of!
point and linear defects@34#. Independent laboratory mea
surements@35# revealed that, as the glass transition is a

ed
2-5
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proached, a polarization time series is emitted which ar
from the reorientation process of electric dipoles; this p
cess includes a large number of atoms~cooperativity!. A
comparison shows that the feature of the latter time serie
strikingly similar @12# to the measured SES activities. Th
similarity is reminiscent of the pressure stimulated curre
model @6#, which suggests that, upon a gradual variation
the pressure~stress! P on a solid, transient electric signals a
emitted, from the~re!orientation of electric dipoles~formed
due to disorder!, when approaching acritical pressure
~stress! Pcr obeying the condition (dP/dt)Tvm/kT
521/t(Pcr), wherevm is the migration volume, defined a
vm5(]gm/]P)T , gm being the Gibbs migration energy an
t(Pcr) the relaxation time for the~re!orientation process
The values ofvm associated with SES generation should e
ceed the mean atomic volume by orders of magnitude,
this entails that the relevant~re!orientation process shoul
involve the motion of a large number of ‘‘atoms’’~see p. 404
of Ref. @6#!. Thus, the laboratory measurements@35# fortify
the suggestion@6,12# that the emission of the SES activitie
could be discussed in the frame of the theory ofdynamic
phase transitions. The very stochastic nature of the rela
ation process has been repeatedly discussed in the liter
~see p. 350 of Ref.@36# and references therein; other sugge
tions have been reviewed in Ref.@37#, while recent illumi-
nating aspects have been forwarded in Ref.@38#!. A stochas-
tic analysis was based on the concept of clusters,
structural rearrangement of which develops in time@36#. Ac-
cording to this analysis the exponential relaxation of the
larization is arrested at a random time variableh i and the
instantaneous orientation reached at this instant is ‘‘froz
at a value exp(2bihi) whereb i5b5const~see Fig. 11.19 of
Ref. @36#!. Assuming thath i itself follows an exponentia
distribution, with a time constantt0!t[t(Pcr), an almost
constant current would be expected for as long as this
l

,
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‘‘lives’’ ~i.e., for a durationh i).
The RTS feature of an SES activity might be understo

in the following context: The durationQ of a pulse is just the
sum of n such identical unitsQ5( i 51

n h i . Under this as-
sumption, the durationQk of the kth pulse, in an SES activ
ity, follows the gamma distribution with a mean lifetim
nkt0 and variancenkt0

2 ~e.g., see Lemma 8.1.6.5. of Re
@39#!; herenk is the number of exponential lifetime backu
units that act cooperatively. If at the critical point,nk backup
units were available at thekth current emission, then th
average number of backup units for thek11 emission would
be the same. This assumption is reminiscent of the as
that the reorientation of a spin, in the random-field Isi
Hamiltonian, will cause on average one more spin to flip
the critical point@40#. Under these assumptions, one fina
obtains@22#

P~v!5
18

5v2
2

6 cosv

5v2
2

12 sinv

5v3
. ~A2!

Expanding Eq.~A2! aroundv50, we find k150.070. An
inspection of the inset of Fig. 9 shows that, for the region
natural frequencies 0<f<0.5, whereP(f) should be con-
sidered as a characteristic function forpk ,the experimental
results for the SES activities agree favorably with the th
retical estimation of Eq.~A2!.

The latter fact, i.e., that the SES activities exhibit a b
havior compatible with a model based on the random-fi
Ising Hamiltonian at the critical point, while thek1 value
that reproduces the ICFMC data (50.08060.003) exceeds
~slightly, but by an amount larger than the experimental
ror! the aforementioned one~i.e.,k150.070), which resulted
from Eq. ~A2!, is currently under detailed investigation.
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