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I. THE TIME-SERIES ANALYZED

The RTS feature of signals mentioned in Fig.1 of the
main text allows us to construct the time-series of sub-
sequently high-level (T3) and low-level (7;) durations
(dwell times) {Th’j}j-vzhl, {]}J};V:ll, where Nj, and N,
(= Np — 1) are the total number of the high- and low-
level states’ durations, respectively. We clarify that the
high-level states correspond to those having the largest
deflections of the electric field amplitude with respect
to the background level, low-level state. Table I presents
the length of each time-series (sampling rate f.,, =1Hz),
the number of transitions between the high and low lev-
els Ny = N;j+ Nj, + 1, and the average life-time (T}) and
(T1) of the high and low level states, respectively, for the
SES activities and “artificial” noises mentioned in Fig.1
of the main text.

II. THE NON-MARKOVIANITY MEASURE G.
SKEWNESS AND KURTOSIS.

Here, we further investigate the non-Markovianity of
SES and “artificial” noises and proceed to the calcula-
tion of the non-Markovian quantitative global measure
G as defined in Ref.[1]. Following the recent illuminating
study of Ref.[2], the definition of G can be summarized
as follows. One of the properties of a Markov process is
that it satisfies the Smoluchowski-Chapman-Kolmogorov
(SCK) equation, and the deviation from this equation
measures the degree of non-Markovianity:

M
= P(m,t|n,0)=> _ P(m,t|k,t—7)P(k,t—7|n,0)
k=1

Dy, (t,7)

where k,m,n = 1,2,...M number the electric field
states (cf. in our case we have M = 2 different states
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labeled “high”, m = 1, and “low”, m = 2, respectively).
The electric field belongs to the mth state when it lies in
the interval mdE < E < (m+ 1)dE,m =0,...,M —1,
dE = (Emaz — Emin)/M. The P(m,t|n,s) is the field-
field conditional probability that the electric field E(t)
is in the state number m, under the condition that at
the earlier time s < t, E(s) was in the state number n.
The integral measure (mean square characteristics) of the
non-Markovianity is[1, 2]

TM?Z/T

where T is the range of the time ¢t and 7 is the shift
in the SCK equation. As an example, for the cases K1
and nl, the calculation for T = 100s yields Gpaz(=
sup;G(r,T)) = 0.107 £ 0.002 and 0.135 =+ 0.004, respec-
tively. For computer-generated Markovian dichotomous
series of comparable length, the corresponding G—values
are smaller by one order of magnitude, which also sug-
gests the non-Markovian character of the experimental
data.

The non-Markovianity was also investigated by cal-
culating the properties of the dwell-time distributions.
The coefficients of skewness v, and kurtosis B2 are[3]

= pz/o® and B2 = pg/o*, where p,, denotes the n—th
central moment, i.e., u, = Y (s — u)"ps of the ran-
domly distributed data z; with point probabilities p,
respectively. These two coefficients v, and (3, are tab-
ulated in Table II, along with o?/u?® for the series of
the high (7%) and low (T7) level states’ durations for all
the SES activities and “artificial” noises. For a Marko-
vian process (e.g. [4]) both T} and T; should follow
exponential distributions, p(T) = Aexp(—AT), and in
the ideal case of f.zp — 0o and Ny — oo the values
0%/u? =1,y = 2 and B = 9 are expected. A Monte
Carlo simulation( 10* realizations) of exponentially dis-
tributed life-times having the same values of: (i) feqp,
(ii) number of events N (=N}, or N;) and (iii) A =1/(T})
or 1/(T;)) with the experimental ones, was performed
for each SES activity and “artificial” noise. Comparing

1/2
G=G(r,T (2, T)dt] (1)
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TABLE I: The length, the number of transitions Ny, the average dwell time in the “high” (T}) and the “low” (1)) states for the
time-series of SES activities and “artificial” noises mentioned in Fig.1 of the main text. The quantity (T'), defined by 1/(T) =

1/{Th)+1/{T7), is also shown.

Signal Length (s) Ny, {T1) (s) (T7) (s) (T) (s)
K1 11899 626 + 2 11.01 + 0.03 25.37 £ 0.20 7.678 £ 0.018
K2 4160 276 £ 6 14.62 + 0.11 14.62 + 0.27 7.31 + 0.07
A 4500 120 + 12 24 +£5 60 + 10 17.1 £ 2.7
U 1750 173 + 3 11.2 +£ 1.2 9.2+ 05 5.05 + 0.29
nl 13000 438 + 4 12.1 £ 0.5 43.5 £ 0.6 9.5 £ 0.3
n2 48000 2280 +70 7.68 + 0.24 319+ 1.5 6.19 + 0.16
n3 14999 568 £+ 16 6.0 £1.0 33.1+19 5.08 + 0.07
n4d 12610 660 + 80 5.0 £ 0.6 29 £5 4.3 £ 0.4
nd 8100 810 £ 60 109 £ 2.5 102 £1.0 5.3 £ 0.6
n6 2650 84 £+ 2 26.1 £ 0.5 332 +£1.1 14.61 + 0.26

the resulting values with those of Table II( see the rele-
vant footnotes), we find that none of the time-series un-
der discussion could be compatible with an exponential
distribution and hence Markovian. The dwell-time dis-
tributions of the high-level states {Th’j};\gll of the SES
activities were also incompatible with the Gaussian dis-
tribution since the Kolmogorov-Smirnov test fails.

III. CONVENTIONAL AND MULTIFRACTAL
DETRENDED FLUCTUATION ANALYSIS.

In the conventional DFA[5, 6], we first sum up the
original time-series and determine the profile y(i),7 =
1,...,N. We then divide this profile of length N into
N/l(= N;) non overlapping fragments of l-observations.
Next, we define the detrended process y; ,(m), in the
v—th fragment, as the difference between the original
value of the profile and the local (linear) trend. We then
calculate the mean variance of the detrended process

1
FIQDFA(Z) = ﬁl ZFZ(l,l/), (2)
where
1
F2lv) = 1 3 ok, (m) 3)

m=1

The slope of the plot log[Fpra(l)] versus logl, leads to
the value of the exponent « in the relation Fpra(l) ~
l®. In our case, since the time-series is recorded with a
frequency fezp, we use the plot log(Fpra) versuslog(At),
because At =1/ feyp-

A generalization of the DFA to a multifractal method
was first suggested in Ref.[7] and further elaborated in
Ref.[8]. In the MF-DFA, the following additional two
steps should be made[8]: First, we average over all seg-
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ments to obtain the ¢g—th order fluctuation function

Ny

1/q
F,(l) = {Nil > [Fz(z,y)}q/z} .

v=1

(4)

This is repeated for several scales [. Second, we ana-
lyze the log-log plots Fy(l) versus ! for each value of g.
For long-range correlated series, F;(I) increases, for large
values of [, as a power law:

(5)

where the function h(q) is called generalized Hurst ex-
ponent. For stationary time series, h(2) is identical[8] to
the well known Hurst exponent H i.e.,

Fy(1) ~ M9,

h(2) = H. (6)

For monofractal time-series h(q) is independent of ¢,
while for multifractal series h(q) depends on gq.

A. Relation of MF-DFA to standard multifractal
analysis

The scaling exponent 7(q) in the standard multifractal
formalism is connected to the partition function Z,(I)
through

Z,(l) ~ 17D, (7)

It can be shown[8] that 7(g) is related to the exponent
h(q) defined in Eq.(5) as follows:

7(q) = qh(q) — 1. (8)

IV. THE WAVELET TRANSFORM

In this transform, the wavelet, which can be almost any
chosen function, can be shifted and dilated to analyze
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TABLE II: The cumulants o2/u? | 1 and B2 for the series of the high- and the low-level states’ durations.

Signal (02 /1) nigh et §io (@%/8)iow 7Y b
K1 1.642°+0.008 1.963=+0.009 6.75+0.04 27°% 5 13.0°%+1.1 193°+26
K2 1.137+0.007 1.669+0.021 5.88+0.08 2.68°+0.25 3.22°40.27 15.2°+1.9
A 0.46°+0.09 0.8°+0.4 3.2+ 1.3 4.6°+1.1 2.9°40.4 11.9+2.4
U 1.2840.14 2.88°+0.27 12.74+ 1.7 14.3°+0.6 7.36°+0.28 61°+5
nl 2.04°40.14 3.8+1.5 8.60+0.10 14.10°+0.18 6.33°+0.06 47°+0.8
n2 2.81%40.12 3.38°+0.05 16.5%+0.4 28.1°4+1.2 11.90%+0.24 17147
n3 3.0°+0.7 3.57°+0.29 17.4°4+2.1 29.5°+1.5 9.7°+ 0.3 108%+7
nd 4.4°40.9 5.3°+0.4 36°+5 33°+6 9.3%+0.7 102°+14
nb 2.8%4+0.5 2.8°+0.4 11.6+2.5 5.7°+0.7 5.9940.4 46°+6
n6 0.148%40.022 -0.232+0.09 2.89+0.06 0.39°+0.04 1.74+0.08 7.0940.20

2Qutside the 95% confidence interval for exponentially distributed
samples with the same mean and number of events.

bQutside the 90% confidence interval for exponentially distributed
samples with the same mean and number of events.

signals(e.g., see Ref.[9]). Two variables appear in the
transform: the location and the scale of the wavelet. If
the wavelet v is translated to a point n and dilated by
a factor [, then we calculate the inner product of the
signal f with the function. If f shows a big change in
a neighborhood of the point n it has a high-frequency
spectrum there. The continuous wavelet transform of
a given function f(t) is defined (e.g., see Ref. [10] and
references therein) with a family of test functions ¢, ;(t),
ie.,

T"P[f](nal) = <fa d}n,l)- (9)

Each test function v, ;(t) is obtained from a single func-
tion 9 (t) (termed analyzing wavelet) by means of a trans-
lation and a dilation )y, ;(¢) = ¢¥[(t — n)/l]. wheren € R
and I € R+, 9(t) is chosen such that both its spread in
time and frequency are relatively limited.

In the study of the scaling processes the following two
features of the wavelet transform play key roles( e.g. Ref.
[11] and references therein): (a) The wavelet basis is con-
structed from the dilation (change of scale) operator; thus
the analyzing family exhibits a scale invariant feature.
(b) 4(t) is chosen so that to have a number ny > 1 of
vanishing moments. The Fourier transform ¥(w) of 9 (t)
satisfies |¥(w)| ~ w™,w — 0.

A common way to build admissible wavelets of arbi-
trary order ny, is to successively differentiate a smoothing
function, e.g., the Gaussian function

d™ .
Iny (t) = dtne et /2 (10)

A. The Orthogonal Wavelet Transform
One can show that if 4 is properly chosen, then the

family {29729, 5}, . with () = 279(277t — k)
with I; = 27 is an orthogonal basis of L? (e.g. see Ref.[9]).
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The orthogonal wavelet coefficients can then be defined
by dy(3,k) = (f,%10)-

Orthogonal wavelets that are often used in practice
are the Daubechies wavelets, indexed by a parameter
np = 1,2,..., which corresponds to the order of the
wavelet. The Daubechies wavelet with np = 1 is in fact
the Haar wavelet (which is discontinuous; it equals 1 at
0<t<1/2,-1at1/2<t<1 and 0 otherwise), but the
Daubechies wavelets with np > 1 are continuous with
bounded support, and have np vanishing moments.

B. The Wavelet Transform Modulus Maxima
(WTMM) method

This method (e.g., see Ref. 19 of the main text and
references therein) is based on the local maxima of the
modulus of the continuous wavelet transform, i.e., on the
local maxima n;( over n) of the function |Ty[f](n,!)|,
where [ is a fixed scale. In other words, in practice,
instead of averaging over all values of |Ty[f](n,l)|, one
averages (within the WTMM) only the local maxima of
|Ty[f](n,1)|. One sums up the g—th power of these max-
ima,

Tmaz

Z(q,0) = D |Ty[£1(ns, )" (11)

i=1

If scaling behavior is observed, scaling exponents 7(q)
can be defined that describe how Z(q,!) scales with {:

Z(g, 1) ~ 1”@ (12)

These 7(g)-exponents are identical[8] to the 7(¢) in
Eq.(7) and related to h(q) in Eq.(8). In Fig.6 of the
main text, we presented the generalized Hurst exponents
h(q) = [r(q) + 1]/q, where 7(q) were determined by
Eq.(12) in the region of small scales I, where log[Z(g,!)]
versus logl is a straight line. Note that usually in
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WTMM the time-series are analyzed directly instead of
the profile y(7) defined in Section III.

V. METHODS IN THE “NATURAL” TIME
DOMAIN

The analysis in the “natural” time-domain[12, 13]
could be summarized as follows: Considering the evo-
lution (xk, @), the continuous function ®(w) can be de-
fined

B S, Qrexp (iwk) _ N k
P(w) = 122\{:1 O N> = ;pk exp (Zwﬁ)

where w = 27w¢, and ¢ stands for the natural frequency
and pr = Qr/ Ei\;l @,- The normalized power spec-
trum is then defined as I(w) = |®(w)|>. For natural
frequencies ¢ less than 0.5, II(w) or II(¢) reduces to a
characteristic function for the probability distribution py
in the context of probability theory. Figure 2 of the main
text shows how the electric signals, mentioned in Fig.1 of
the main text, are read in “natural” time, i.e., py, or p(x)
versus xj or X, respectively. Recall that[12, 13] for nat-
ural frequencies ¢ close to zero, Il(w) = 1 — k1w? + ...,
with k1 = (x*) — (x)?, where (x™) = 3, xi"px is the
m—th “natural” moment.

A. Results of DFA

The DFA analyses for the series of the high level
states’ durations (see Table III of Ref.[14]) led to apigh-
values which are close to unity for the SES activities and
Qpigh = 0.65 — 0.8 for the “artificial” noises. These, in
reality, are the exponents that are found when DFA is
applied to the “natural” time domain, i.e.,to the signals
depicted in Fig.2 of the main text. This difference in
the apign— values may allow a distinction between these
two types of signals. Furthermore, since apgp > 0.5 for
both types of signals, this excludes the possibility that
the high-level states could be characterized as “random”
spikes (superposed on a background level -i.e. the low
state- with long range correlations, see [15]). Last but
not least, we emphasize that the DFA analysis of a di-
chotomous Markovian process in the “natural” time do-
main, leads to a DFA exponent 0.5, see Fig.5(b) of the
main text. In other words, since both SES activities and
artificial noises lead to a > 0.5, when analyzing them in
the natural time domain, this reveals that they are both
non-Markovian (cf. this conclusion was also obtained in
Section IIT of the main text but on different grounds).
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tion versus the number of events N(= N.)( exponentially
distributed data were used).
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B. The “entropy” S, and the variance k; of the
“uniform” distribution

As discussed in the main text the “entropy” S, of the
“uniform” distribution has the value S, ~ 0.0967. Figure
1 depicts the expected value for k; and S for a “uniform”
distribution as a function of the number of the high level
states Np,, along with their uncertainty of two standard
deviations. The values of x; and S for all the SES ac-
tivities and “artificial” noises mentioned in Fig.1 of the
main text, are shown in Table I of the main text. The
fact that only n5 among the “artificial” noises seems to
have a smaller “entropy” than S, (S[n5] =0.091+0.011)
might be understood in the following context: For n5, we
have Nj, = 400 (see Table I) for which Fig.1 reveals that
the aforementioned value of 0.091 differs from S, only by
an amount smaller than one standard deviation.

VI. DETRENDED FLUCTUATION ANALYSIS
OF A DICHOTOMOUS SIGNAL. THE MARKOV
CASE

Following Ref.[4], in the case of a Markovian dichoto-
mous (M = 2,m = 1,2) time-series the probability
densities for the time spent in a single sojourn in the
states “high” (m = 1) and “low” (m = 2) respectively, are
both exponential, i.e., p1(T) o exp(—T/7hign),p2(T)
exp(—T/Tiow) leading to the following expressions for the
field-field conditional probabilities

1 exp(—7/T,
L oRCT/7ess),
Tlow Thigh

P(l,t+T|1,t)=Teff[ (13)

and

.
P2, t+7|1,t) = ﬁu — exp(—T/Tess)), (14)
ig
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where 1/7c sy = 1/Thigh+1/Ti0w and 7 is a time lag. Note
that the expressions of Egs.(13) and (14) for the condi-
tional probabilities satisfy the SCK equation. Moreover,
the probability to observe the “high” state P; is

Thigh

Ph=—
Tlow + Thigh

(15)

and the joint probability Piq(7) to observe the “high”
state at both the times ¢ and ¢ + 7 is
P11(7') :Plp(].,t+T|1,t) (16)
by the definition of the conditional probability.
The power spectral density S(w) is the Fourier trans-
form of the autocovariance C(7) = ([z(t+7) — (x)][z(t) —
(x)]) of the stationary signal z(t)[16]:

C(r) = (a(t + )a(t)) — (@)? = % /0 ~ §(w) cos(wr)dw.

(17)
If we assume that the states “low” and “high” have am-
plitudes 0 and AE, respectively, we have (z) = (AE)Py,
and (z(t+7)z(t)) = (AE)?Pi11(7), and, using the expres-
sions of Eqgs.(13),(15)-(17), we obtain

C(r) = (AE>? —H_exp(—-—)

(18)
Tiow t Thigh Teff

Equation (18), using the Wiener-Khinchin theorem, leads
to the power spectral density

2 2
4(AE) Tepf

S(w) = 4/0 C(7) cos(wr)dr = (e o) (L 272, )

(19)
The squared variability of DFA is given, in terms of
S(w), by[16]:

Fora) = 5= [ Sw/roratwide (20

where w denotes the dimensionless frequency and
rpra(w) is given from[16]:

rpra(w) = wt —8w? — 24 — 4w? cos(w)
+ 24 cos(w) + 24w sin(w)]/wb. (21)

In Fig.4(a) of the main text, the Fpra(l) versus
l/7es5 of a dichotomous Markovian process was drawn
using Eqgs.(19)-(21), while Fig.4(b) of the main text de-
picts S(w) versus w/wers where wepp = 2m/7esy, using
Eq.(19). An inspection of these figures shows that:

Concerning the power spectrum exponent [3: it ap-
proaches the values 2 and 0 for the aforementioned short-
and large-time scales, respectively. For time scales com-
parable to T.r¢, values of § around unity or larger( e.g.
B = 1.4) can fit the data. Note that, for a given (high)
frequency range, upon increasing 1/7.5; the calculated
value of § becomes larger.

Concerning the DFA exponent a: As an example, three
Markovian dichotomous time-series were constructed
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with Tlow/2 = Thigh/z = T.rs = 4, 10 and 100s, and the
values of Fpra(At) are shown in Fig.5(a) of the main
text. These values are in agreement with the continuous
lines that were drawn in each case using Eqgs.(19)-(21).
The results show the following feature: At small lags,
exponents in the range a = 1.3 — 1.4 # 1.5 are esti-
mated (note that upon decreasing 7.rs, the At—range
described by the exponent indicated becomes smaller).
The fact that the DFA exponent approaches the value
1.5 at small lags is in quantitative agreement with the
high frequency behavior of the spectrum of Eq. (19)( re-
call that a = 1.5 corresponds to the case of the Brownian
motion).

VII. K-MEANS CLUSTERING ALGORITHM

The K-means problem consists of dividing a set of mul-
tivariate data into non-overlapping groups in such a way
as to minimize the sum (across the groups) of the sums
of squared residual distances to the group centroids (this
statistic is usually called Sum of Squared Errors, SSE). In
other words, a computer program tries to minimize the
sum, over all groups, of the squared within-groups resid-
uals, which are the distances of the objects to the respec-
tive group centroids. The groups obtained are such that
they are geometrically as compact as possible around
their respective centroids. Hundreds of algorithms have
been proposed to solve the K-means problem, but no
algorithm can quarantee that it will find the optimum
partition every time[17]. A large number of criteria have
been proposed to decide on the correct number of groups
in cluster analysis. Milligan and Cooper[18], after com-
paring 30 of these criteria, concluded that the best cri-
terion is the one suggested by Calinski and Harabasz[19]
(hereafter called C-H criterion). This is simply the F-
statistic of multivariate analysis of variance and canonical
analysis, where F denotes the ratio of the mean squares
for the given partition divided by the mean squares for
the residuals. In other words, C-H is ratio of the inter-
group variance divided by the intra-group one. The best
number of groups, K, present in a data set is decided
upon determining the number of classes for which C-H is
maximum. Here we used the K-means partitioning pro-
gram provided by Ref.[20]. This program allows users to
search through different values of K in a cascade, starting
with k1 groups and ending with k2 groups, with k1>k2.
In the cascade from a larger to the next smaller num-
ber of groups, the two groups whose centroids are the
closest in multivariate space are fused and the algorithm
iterates again to optimize the SSE function, reallocating
objects to the groups. The whole classification process
is repeated a number of times using different random
starting configurations (i.e., different initial assignments
of objects to the groups). The program retains the so-
lution for each number of groups K where C-H is the
highest. We run the program by considering 10 “ob-
jects”, i.e., the four SES activities and the six “artificial”
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noises, and using the h(2)—( resulting from MF-DFA in
the “natural” time domain) and k;—values reported in
Table I of the main text. Since, the physical variables are
not dimensionally homogeneous, the ranging transforma-
tion: y' = [y(4, J) —Ymin]/ (Ymaz —Ymin) Was applied, after
considering that ranging transformation is far superior to
standardization (z-score transformation)[18]. A compar-
ison of partitions from k1=5 to k2=2 groups, results in
the clustering shown in Fig. 9 of the main text with the
thick straight lines. This clustering corresponds to the
partition for which C-H is maximum and consists of the
following two groups, K=2: the first one includes the four
SES activities, while the second the six “artificial” noises
nl ton6. The centroid (solid dot) of the first group (SES)

lies at Ak = 0.013, h(2) = 0.9375, while the centroid of
the second (AN group) at Ax = —0.013, h(2) = 0.745.
Note that the Ak—value(=1/12-k;) of the centroid of the
group of the four SES activities corresponds to x1=0.070,
which coincides with the theoretical value obtained from
the model of critical phenomena explained in Refs.[12]
and [13]. As for the two points of ICFMC, we note that
they lie in the border between the aforementioned two
groups. It should be noticed that when the “entropy”
values (column S in Table I of the main text) are used,
instead of k1, a comparison of partitions from k1=4 to
k2=2 groups, also leads to the clustering shown in Fig.
9 of the main text.
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