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A surrogate data analysis is presented, which is based on the fluctuations of the “entropy”S defined in the
natural time domain[Phys. Rev. E68, 031106(2003)]. This entropy is not a static one such as, for example,
the Shannon entropy. The analysis is applied to three types of time series, i.e., seismic electric signals,
“artificial” noises, and electrocardiograms, and it “recognizes” the non-Markovianity in all these signals.
Furthermore, it differentiates the electrocardiograms of healthy humans from those of the sudden cardiac death
ones. IfdS anddSshuf denote the standard deviation when calculating the entropy by means of a time window
sweeping through the original data and the “shuffled”(randomized) data, respectively, it seems that the ratio
dSshuf/dS plays a key role. The physical meaning ofdSshuf is investigated.
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I. INTRODUCTION

In an electric signal consisting ofN pulses, the natural
time was introduced[1,2] by ascribing to thekth pulse the
value xk=k/N. The analysis is then made in terms of the
couplesxk,Qkd, whereQk stands for the duration of thekth
pulse. The entropyS, defined[1,3] asS;kx ln xl−kxllnkxl,
where kxl=ok=1

N pkxk, pk=Qk/on=1
N Qn and kx ln xl

=ok=1
N pkxk ln xk, was found[3] to distinguish seismic electric

signals(SES) activities from artificial noises(AN), where the
latter terminology stands for electrical disturbances which
are recorded at a measuring site due to nearby man-made
electric sources. More precisely, SES activities and AN have
S values smaller and larger than thatsSud of a “uniform” sud
distribution, respectively(as the latter was defined in Refs.
[1,3,4]). Furthermore, ion current fluctuations in membrane
channels(ICFMC) haveS very close toSu [3].

The fact that a system contains nonlinear components
does not necessarily reflect that a specific signal we measure
from the system also exhibits nonlinear features. Thus, be-
fore analyzing this signal by applying nonlinear techniques,
we must first clarify if the use of such techniques is justified
by the data available. The method of surrogate data has been
extensively used to serve such a purpose(see Ref.[5] for a
review). Surrogate data refer to data that preserve certain
linear statistic properties of the experimental data, but are
random otherwise[6,7]. These data are prepared by various
procedures; for example, Siwyet al. [7], in order to study the
nature of dwell-time series in ICFMC, among other methods,
also used surrogate data which have been obtained by three
different procedures. The present paper aims, in general, at
presenting a kind of surrogate data analysis using the entropy
fluctuations in the natural time domain(see below) as dis-
criminating statistics. Throughout the paper, the surrogate
data are obtained by shuffling theQk randomly and hence
their distribution is conserved. Applying such a procedure,
we do the following: consider the null hypothesis that the

data consist ofindependentdraws from a fixed probability
distribution of the dwell times; if we find significantly differ-
ent serial correlations in the data and their shuffles, we can
reject the hypothesis ofindependence, see paragraph 3.1 of
Ref. [5]. In other words, the tested null hypothesis is thatQk
are independent and identically distributed(IID ) random
variables, i.e., that there are no correlations between the
lengths of consecutive intervals. If the original(continuous)
time series is Markovian, then the null hypothesis for theQk
should hold, i.e., theQk are IID. We emphasize that the ter-
minology “Markovian” throughout this paper always refers
to the original time series.

Here, as a measure of the natural time entropy fluctua-
tions, we consider the standard deviationdS when we calcu-
late the value ofS for a number of consecutive pulses and
study howSvaries when sweeping this time window through
the whole time series. We use the following three data sets:
Two of them are those treated in Ref.[3], i.e., SES activities
and AN. As a third one, we preferred to use, instead of
ICFMC, the case of electrocardiograms(ECG) for several
reasons, chief among of which are(a) they are publicly ac-
cessible[8]; (b) instead of the single ICFMC example, a
large variety of ECG are available(i.e., 105 individuals are
employed here, 10 healthy and 95 patients); and(c) the case
of ECG is similar to ICFMC, in the sense that theS value in
ECG turns out to be very close toSu as in ICFMC investi-
gated in[3]. Note, however, that the intervals between heart
beats fluctuate widely, e.g.,[9].

A general agreement about whether normal heart dynam-
ics are chaotic or not is still lacking(e.g., see Ref.[10] and
references therein). The most commonly used nonlinear
complexity measures are fractal dimensions of various kinds
(e.g., correlation dimension, Renyi dimensions). Each of
them measures different aspects of thestatisticson the at-
tractor. On the other hand, Liapunov exponents and the
Kolmogorov-Sinai entropy(KS entropy) and entropy rates
are measures of thedynamicson an attractor. Except for the
KS entropy and entropy rates, the other categories of com-
plexity measures assume a purely deterministic system(e.g.,
see Ref.[11]). Since a physiological time series may be due
to a mixed process, stochastic and deterministic, the use of*Electronic address: pvaro@otenet.gr

PHYSICAL REVIEW E 70, 011106(2004)

1539-3755/2004/70(1)/011106(10)/$22.50 ©2004 The American Physical Society70 011106-1



fractal dimensions in physiological time series has been oc-
casionally criticized[11]. On the other hand, entropy is a
concept equally applicable to deterministic as well as sto-
chastic processes. This is why we preferred to use the en-
tropy in natural time(more precisely its fluctuationsdS) as
discriminating statistics. The following point, however,
should be stressed. Complexity measures based onstaticen-
tropy (e.g., Shannon entropy) quantifystatisticalorder in the
time series. The underlying key property of these complexity
measures is the probability distribution of the(dwell times in
the) data analyzed; thus, the result of such computations
should be independent of permutations performed on the(se-
quence of the dwell times in the) time series as in a surrogate
(randomized) data set obtained by data shuffling. On the
other hand, the entropy in natural time(and the relevant mea-
sures) considers, from its definition, thesequentialorder (of
beats); in other words,S is adynamicentropy, i.e., it captures
characteristics of the dynamics in a system. Additional com-
ments on the importance of the fluctuations ofS in ECG will
be made in Sec. V.

In all examples, we use a sliding window of length three
to ten pulses, except otherwise stated. Concerning the sym-
bols, we reservedS onlyfor the case when the calculation is
made by asingletime window, e.g., five pulses. The symbol

dS denotes the average of thedS values calculated for a
sequence of single windows, e.g., three, four, and five pulses.
Finally, kdSl stands for thedS values averaged over a group
of individuals, e.g., the 10 healthy subjects.

The present paper is organized as follows. In Sec. II, we
investigate whether a distinction between SES activities and
AN can be achieved by thedS value alone. Furthermore, we
examine ifdS can recognize the non-Markovianity in all the
signals investigated. In Sec. III, we attempt to shed light on
the quantitydSshuf calculated in a surrogate(randomized)
data set obtained by data “shuffling.” We find thatdSshuf in
ECG is a measure ofs /m (wherem ands stand for the mean
value and the standard deviation of the corresponding inter-
vals; see below). Section IV shows that thedSshuf value dif-
fers from dS, as expected(e.g., the entropyS is not static
entropy, as mentioned above). The prominent role of the ra-
tio dSshuf/dS in distinguishing ECG of healthy humans from
those who suffered from sudden cardiac death is shown in
Sec V. The conclusions are summarized in Sec. VI. Finally,
an Appendix is reserved to derive an exact relationship be-
tweendSshuf ands /m whenQk are IID.

II. THE POSSIBILITY OF EMPLOYING dS
TO “RECOGNIZE” THE NON-MARKOVIANITY

We start by examining whether thedS values alone can
distinguish SES activities from AN as well as “recognize”
their non-Markovianity. Recall[2,3] that SES and AN are
time series of a dichotomous nature which are non-
Markovian. In a dichotomousMarkovian time series, the
dwell times sQkd are exponentially distributed; for such a
series we plot, in Fig. 1(a), the dS value versus the time-
window length.(Since in the calculation ofS only ratios of
Qk are involved, the result does not depend on the transition
rates of the Markovian process.) The error shown in this case
is on average 7%.(The calculation was made for a total
number of 102 pulses; see below. Note that this error de-
creases upon increasing the number of pulses, i.e., it be-
comes<2% for 103 pulses, which will be used later.) In the

FIG. 1. (Color) (a) The dS values for each SES activity and
artificial noise versus the time-window length. The corresponding
values for a Markovian time series(102 pulses) are also plotted
(green). (b) dS versusdSshuf (time-window range 3–5) for all the
SES activities and AN in(a). The straight line corresponds to
dSshuf=dS.

FIG. 2. (Color) The kdSl values for the QRS intervals(see the
text) of the seven groups of humans versus the time-window length.
The corresponding values for a Markovian time series(103 pulses,
labeledM) are also plotted.
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same figure, we insert thedS values calculated for the four
SES activities(labeled K1, K2, A, and U) and the six AN
(labeled n1 to n6) depicted in Fig. 1 of Ref.[3]. An inspec-
tion of Fig. 1(a) reveals the following conclusions. First,no
distinction between SES activities and AN(both of which
have estimation errors comparable to the aforementioned er-
ror of the Markovian) is obvious. An inspection of Table I of
[12] reveals that the number of pulses in three(out of the
four) SES activities is around 102 for K2, U, and A(while for
K1 it is <310) and this is why we calculated here the Mar-
kovian case for 102 pulses. Second, concerning the possibil-
ity of “recognizing” the non-Markovianity(as discussed and
shown in Refs.[2–4] by independent procedures), this could
be possibly supportedonly for the shorter time windows(i.e.,
three, four, and possibly five pulses) for all SES activities as
well as for most AN(i.e., n6, n4, n3, n2, possibly n1, butnot
for n5); see Fig. 1(a).

We now investigate if thedSvalues alone can “recognize”
the non-Markovianity in ECG. In a single sinus(normal)
cycle of an ECG, the turning points are labeled with the
letters P, Q, R, S, and T. We used here the QT database from
the physiobank[8] (see also[13]), which consists of 105
15-min excerpts of Holter recordings as follows: 10 from the
MIT-BIH Normal Sinus Rhythm Database(i.e., healthy sub-
jects, hereafter labeled H), 15 from the MIT-BIH Arrhythmia
Database(MIT ), 13 from the MIT-BIH Supraventricular Ar-
rhythmia Database(MSV), 6 from the MIT-BIH ST Change
Database(MST), 33 from the European ST-T Database
(EST), 4 from the MIT-BIH Long-Term ECG Database(LT),
and 24 from sudden death patients from BIH(SD) (BIH de-
notes the Beth Israel Hospital). In Fig. 2, we plot, for the
QRS-interval time series, thedSvalue averaged over each of
the aforementioned seven groups versus the time-window
length. Since all time series of these seven groups have<103

intervals, we insert in the same figure the results calculated
for a Markovian case(cf. with the procedure mentioned in
the previous paragraph) of comparable length<103. We see
that the Markovian case exhibitsdS values that are roughly
one order of magnitude larger than those of the seven groups
of humans, which clearly points to the non-Markovianity of
all the signals in these groups. We emphasize that the same
conclusions are drawn if we consider, instead of QRS, the
series of QT intervals, or the beat-to-beat intervals(RR). In
summary, thedS value alone can well recognize the non-
Markovianity in ECG.

III. THE PHYSICAL MEANING OF dSshuf

In Fig. 3(a), we plot, for each of the 105 individuals, the
value ofs /m versus the corresponding value ofdSshuf (time-
window range 3–10 beats) for the RR intervals. The same is
repeated in Figs. 3(b) and 3(c) for the QT and QRS intervals,
respectively. All three plots can be described by linear be-
havior, and a least-squares fitting to a straight line passing
through the origin leads to the following slopes: 38.6±0.6,
36.8±0.2, and 40.1±0.4 for the RR, QT, and QRS intervals,
respectively. This points to the conclusion thatdSshuf pro-
vides, as intuitively expected, a measure ofs /m. (This, how-
ever,cannotbe supported with certainty for the SES activi-

ties and AN.) Note that, although these three slopes are more
or less comparable, they differ by amounts lying outside their
standard error. Furthermore, it may be worthwhile to men-
tion that if we studyaltogetherthe RR, QT, and QRS inter-
vals, for the 10 healthy humansonly (Fig. 4), a good linearity
of s /m versusdSshuf results with a slope 37.5±0.4(e.g., if
we study each of the three intervals separately, we find
slopes that agree within the error margins, i.e., 37.5±0.4,
37.1±0.7, and 37.8±0.1 for the RR, QT, and QRS intervals,
respectively). The origin of thiscommonbehavior merits fur-
ther investigation.

One could argue thatQk may become IID upon their shuf-
fling. In the Appendix, we show that, whenQk are IID, dS is

FIG. 3. Thes /m value, for each of the 105 individuals, versus

the correspondingdSshuf value for the(a) RR, (b) QT, and(c) QRS
intervals. The identity of the individual associated with each point
can be found in Ref.[26].
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actually proportional tos /m; the following relationship is
obtained:

dSshuf=
s

m

1
ÎN − 1

Fo
k=1
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− So
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+

1
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and e denotes, as usual, the base of the natural logarithms.
The relation(1) reveals thatdSshuf versuss /m must be a
straight line with a slope ranging from 34.2 to 40.4, for a
time-window length 3 to 10. This result is comparable with
the slopes determined above from the analysis of the ECG
data.

IV. ON THE DIFFERENCE BETWEEN dS AND dSshuf

We first comment on the difference betweendSanddSshuf
in the SES activities and AN. In Fig. 1(b), the value ofdS
versus the correspondingdSshuf was plotted for each of the
ten signals discussed in Fig. 1(a). The average values in Fig.
1(b) have been calculated over the three time windows of
three, four, and five pulses, since we mentioned in Sec. II
that the “recognition” of the non-Markovianity in all SES
activities becomes possible in this time-window range. If we
disregard n6, and despite the errors of around 5%(for the
time-window range 3–5), we may say that there is a system-
atic tendency pointing to a value ofdSshuf/dS larger than
unity (the same conclusion is drawn if we take the averages
over the time-window range 3–10). This is consistent with
the non-Markovianity of all these signals, because for a Mar-
kovian case we expectdSshuf=dS. (Since, by definition,
dSshuf corresponds to the entropy fluctuations uponrandom

mixing of Qk, see Sec. I, it is naturally expected that in a
Markovian case the two quantitiesdS anddSshuf shouldco-
incide.) Note that the reverse isnot always true(thus the
equality dSshuf=dS may also hold fornon-Markovian time
series), as will be demonstrated below with precise ex-
amples.

We now proceed to comparedSshuf with dS in ECG. Fig-
ure 5(a) depicts thedS values, calculated for each of the 105
individuals, versus the correspondingdSshuf for the RR inter-
vals (time-window range 3–10 beats). The same is repeated
in Figs. 5(b) and 5(c) for the QT and QRS intervals, respec-
tively. In each case, we also plot the straight linedSshuf=dS

FIG. 4. (Color) The s /m value for RR, QT, and QRS intervals
of the ten H versus the correspondingdSshuf value (time-window
range 3–10 beats). The straight line results from a least-squares fit
of all 30 points. For the identity of the individual associated with
each point, see Ref.[26].

FIG. 5. ThedS value, for each of the 105 individuals versus the
correspondingdSshuf value for (a) RR, (b) QT, and(c) QRS inter-
vals. The straight line, drawn in each case, corresponds todSshuf

=dS. For the identity of the individual associated with each point,
see Ref.[26].
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to visualize that the vast majority of points fall below this
line. The nonequality ofdSshuf anddS has also been verified
by applying the Wilcoxon paired signed-rank test recom-
mended[14] to be followed for non-Gaussian paired data.
The tested null hypothesis is that the means ofdSshuf anddS
are the same and is rejected at a level of significance well
below 0.01, since the data of Figs. 5(a)–5(c) lead to normally
distributed variablesz=−8.29, −6.81 and −6.32, respectively
[cf. the corresponding one-tailed asymptotic significance is
given by PsZ,zd, i.e., the probability to obtain a normally
distributed variable which is smaller thanz]. Note that a
least-squares fit to a straight line passing through the origin
results in the following expressions:dS=s0.76±0.03ddSshuf,
dS=s0.85±0.02ddSshuf, and dS=s0.94±0.02ddSshuf for Figs.
5(a)–5(c), respectively. The sampling rateFs in ECG is
250 Hz; thus, if we take as an example the RR intervals, the
experimental error in their allocation is around 1/Fs. The
latter reflects in the calculation ofdS anddSshuf errors which
are drastically smaller than those required to eventually jus-
tify a compatibility of the expressiondS=s0.76±0.03ddSshuf,
found from Fig. 5(a), with a straight line of slope equal to
unity, i.e.,dS=dSshuf.

The difference betweendS and dSshuf in ECG could be
understood in the context that the former depends on the
sequentialorder(of beats), as mentioned in Sec. I, while the
latter does not. Since short-(and long-) range correlations are
a usual feature(see Ref.[15] and references therein) in heart-
beat dynamics, which are possibly destroyed(or become
weaker) upon randomizing the data, more “disorder” is intu-
itively expected to appear after randomization, thus reflect-
ing dSshuf.dS. Furthermore, note that inall three plots of
Fig. 5 there are some drastic deviations from the straight line
dS=dSshuf. The origin of these deviations is currently being
investigated in detail.

Finally, we further clarify the aforementioned point that
the equalitydS=dSshuf does not necessarily reflect Mark-
ovianity. In Fig. 6, we plot, for the QT intervals,dSshuf versus
dS (for a time-window range of 3–10 beats) for SD and H.
We see that there are several individuals(mainly SD, see

also the next section) of which their points lie practically
(i.e., within the error margins) on the straight linedS
=dSshuf. If we plot theirdS (or dSshuf) values versus the time
window (in a similar fashion to that in Fig. 2), we find that
these values are distinctly smaller than those of the Markov-
ian case, thus making clear that these individuals cannot be
characterized as exhibiting Markovian behavior.(This non-
Markovianity holds forall H andall SD.)

V. THE USE OF dSshuf/dS TO DISTINGUISH ECG
OF HEALTHY HUMANS FROM SUDDEN CARDIAC

DEATH ONES

Here we focus only on two groups of ECG, namely H and
SD, and examine whether they can be distinguished by
means of the ratiodSshuf/dS. We calculate this ratio, for each
type of interval, at two ranges:(i) a shortssd range of three to
four beats(consider that thesmallestnumber allowed for the
natural time-domain analysis is three beats) and(ii ) a longer
sLd range of 50–70 beats. For the sake of convenience, we
definen;dSshuf/dS, and hence the following ratios are in-
vestigated:nsstd and nLstd, wheret denotes the type of in-
terval (i.e., t=RR, QRS, or QT) and s,L refer to the range
studied(i.e., s=3–4 beats andL=50–70 beats).

The calculated values fornsstd and nLstd for the three
types of intervals are given, for all H and SD, in Table I. The
minima minHfnkstdg and maxima maxHfnkstdg (wherek de-
notes either the short,k=s, or the longer,k=L, range)
among the healthy subjects are also inserted in two separate
rows, for each type of interval and each range studied. These
minima and maxima are labeledHmin andHmax, respectively.
The cases of SD which have smaller and larger values than
Hmin and Hmax (reported in each column) are marked with
superscripts “a” and “b,” respectively.

A careful inspection of Table I leads to the following main
conclusion:All SD violate one or more H limits(i.e., they
have values that are smaller thanHmin or larger thanHmax).
We intentionally emphasize that this conclusion is also
drawn evenwhen disregarding the results for the QT inter-
vals.(Concerning the latter intervals: Only five SD out of 24
violate the H limits; however, inall SD, their dS values
themselves are larger than those in H, see also Fig. 6. The
usefulness of this difference will be discussed in detail else-
where.) In other words, when focusing our investigation
solely on the RR and QRS intervals,all SD violate one or
more of the four H limits related tonssRRd, nLsRRd,
nssQRSd, and nLsQRSd. This is important from a practical
point of view, because the RR and QRS intervals can be
detected more easily(and accurately) than the QT by means
of an automatic threshold-based detector(e.g., see Ref.[16],
which evaluated the results of a detector that has been for-
warded in Refs.[17,18] to determine automatically the
waveform limits in Holter ECG).

A further inspection of Table I leads to the following ad-
ditional comment: When investigating the RR intervalsalone
(which can be detected automatically more easily and pre-
cisely than the other intervals), i.e., studyingnssRRd and
nLsRRd, the vast majority of SD(22 out of 24 cases) can be
distinguished from H(only two SD, i.e., sel30 and sel47,

FIG. 6. (Color) ThedSvalue, in each of the 10 H(black) and 24
SD (red), for the QT intervals versusdSshuf (time-window range
3–10 beats). Note that the values of the ordinates are appreciably
smaller than thedSvalues<2310−2d of the Markovian time series
(103 events) depicted in Fig. 2.
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obey the corresponding H limits). Specifically, concerning
nssRRd, 15 SD have values smaller thanHmin=1.18, while
only one SD(i.e., sel43) has a value exceedingHmax=2.25;
as fornLsRRd, 18 SD exceedHmax=0.77, while only two SD
(i.e., sel34 and sel42) have values smaller thanHmin=0.44.

In what remains, we proceed to a tentative physical inter-
pretation of the above results, the main feature of which
focuses on the fact that most SD simultaneously havenssRRd

values smaller thanHmins=1.18d andnLsRRd values exceed-
ing Hmaxs=0.77d. The RR time series of healthy subjects are
characterized by high complexity(e.g., [15,19]); this, if we
recall that in a Markovian series we intuitively expect
dSshuf/dS=1 (and hencens=1 andnL=1), is compatible with
the fact that inall H bothnssRRd andnLsRRd distinctly differ
from unity (see Table I). We now turn to SD by considering
that for individuals at high risk of sudden death the fractal

TABLE I. The values of the ratiosdSshuf/dS in the shortssd range 3–4snsd or in the longersLd range
50–70 beatssnLd in H (sel16265 to sel17453) and SD(sel30 to sel17152) for the RR, QRS, and QT intervals.

Individual

3–4 beatssnsd 50–70 beatssnLd

RR QRS QT RR QRS QT

sel16265 1.82 1.00 1.24 0.48 1.02 0.76

sel16272 1.74 0.99 0.98 0.77 1.08 1.11

sel16273 2.21 1.00 1.48 0.50 0.88 0.71

sel16420 1.55 0.98 1.08 0.53 1.09 0.90

sel16483 2.25 1.02 1.14 0.52 1.16 0.92

sel16539 1.42 1.06 1.25 0.50 1.08 0.65

sel16773 1.94 1.00 0.99 0.44 1.05 0.96

sel16786 1.42 1.00 1.19 0.56 1.04 0.77

sel16795 1.18 0.98 1.08 0.73 0.96 0.99

sel17453 1.38 1.01 1.02 0.56 0.98 0.81

Hmin 1.18 0.98 0.98 0.44 0.88 0.65

Hmax 2.25 1.06 1.48 0.77 1.16 1.11

sel30 1.29 1.11b 1.09 0.65 0.72a 1.09

sel31 0.96a 1.08b 1.17 1.23b 0.94 0.62a

sel32 1.39 1.14b 1.12 1.02b 0.69a 0.90

sel33 1.05a 0.99 1.00 0.86b 0.82a 0.99

sel34 2.11 1.29b 1.11 0.42a 0.78a 0.67

sel35 1.00a 1.00 0.96a 1.01b 1.05 1.08

sel36 1.02a 1.02 1.04 0.92b 1.00 0.88

sel37 1.07a 1.18b 1.07 0.55 0.75a 0.65

sel38 0.99a 1.09b 1.13 1.37b 0.89 1.04

sel39 0.96a 1.02 1.06 2.93b 0.92 0.90

sel40 1.01a 1.00 0.93a 0.78b 0.93 1.29b

sel41 1.07a 1.04 1.02 1.07b 0.84a 0.96

sel42 1.63 1.08b 1.23 0.42a 1.06 0.67

sel43 2.71b 1.11b 1.05 0.56 0.76a 0.89

sel44 0.91a 0.95a 0.88a 2.24b 1.46b 1.32b

sel45 0.98a 1.24b 1.29 0.98b 0.86a 0.79

sel46 1.03a 1.01 1.03 1.00b 0.84a 1.01

sel47 1.56 0.97a 1.03 0.45 0.97 1.01

sel48 0.82a 1.18b 1.44 1.48b 0.68a 0.73

sel49 0.93a 1.11b 0.96a 1.22b 0.70a 1.14b

sel50 1.05a 0.98 0.98 0.93b 1.23b 1.50b

sel51 1.25 1.01 0.97a 1.05b 1.24b 0.91

sel52 1.50 1.16b 1.22 1.00b 0.73a 0.68

sel17152 1.64 1.01 1.04 0.90b 1.01 0.97

aThese values are smaller than the minimumsHmind value ofdSshuf/dS in H for each range.
bThese values are larger than the maximumsHmaxd value ofdSshuf/dS in H for each range.
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physiological organization(long-range correlations) breaks
down and this is often accompanied by emergence ofuncor-
related randomness(see [15] and references therein). It is
therefore naturally expected that in SD the values ofnssRRd
and nLsRRd become closer to the Markovian value(i.e.,
unity) compared to H; thus, in SD,nssRRd naturally becomes
smaller than the value 1.18(the correspondingHmin limit )
andnLsRRd larger than 0.77(the correspondingHmax limit ).

We now focus on the following important property of H:
althoughboth nssRRd andnLsRRd differ from unity, as men-
tioned, they systematically behavedifferently, i.e.,
nssRRd.1 while nLsRRd,1. The exact origin of the latter
difference has not yet been identified with certainty, but the
following comments might be relevant: First, in the frame-
work of the frequency-domain characteristics of heart-rate
variability (e.g.,[20]), we may state thatnssRRd andnLsRRd
are associated with the high-frequency(HF, 0.15–0.4 Hz)
and low-frequency(LF, 0.015–0.15 Hz) range in the RR ta-
chogram(“instantaneous” heart rate, 1/RR). An important
difference in the effect of the sympathetic and parasympa-
thetic modulation of the RR intervals has been noticed(e.g.,
see [20] and references therein): Sympathetic tone is be-
lieved to influence the LF component, whereasboth sympa-
thetic and parasympathetic activity have an effect on the HF
component[recall that our results shownssRRd.nLsRRd].
Second, at short time scales(high frequencies), it has been
suggested[21] that we have relativelysmoothheartbeat os-
cillations associated with respiration(e.g., 15 breaths per
minute corresponds to a 4-sec oscillation with a peak in the
power spectrum at 0.25 Hz, see[20]); this is lost upon ran-
domizing the consecutive intervalsQk, thus probably leading
to (larger variations—compared to the original experimental
data—between the durations of consecutive intervals and
hence to) dSshuf values larger thandS, i.e., anssRRd value
larger than unity(an extension of the current analysis to a
surrogate sequence for a simultaneous recording of the
breath rate and the instantaneous heart rate, upon considering
the points discussed in paragraph 4.6 of Ref.[5], could
greatly contribute to clarifying the validity of such an expla-
nation). Such an argument, if true, cannot be applied, of
course, in the longer-range 50–70 beats and hence explain
why the opposite behavior, i.e.,dSshuf,dS, then holds. The
latter finding must be inherently connected to the nature of
the long-range correlations. The existence of the latter is
pointed out from the fact that(in this range also) the RR
intervals result indS valuess,10−3d which significantly dif-
fer from the MarkoviandS value s,10−2d (the existence of
the long-range correlations in the heart-rate variability has
been independently established by several applications of the
detrended fluctuation analysis, e.g., see[21,15] and refer-
ences therein).

A simplified interpretation of the results of Fig. 6, and in
particular the reason why for the QT intervals the quantitydS
is larger for the SD than for the H, could be attempted if we
consider that(i) S could be thought of as a measure of the
“disorder” (in the consecutive intervals), (ii ) the essence of
the natural time-domain analysis is built on the variation of
the durations of consecutive pulses, and(iii ) it has been clini-
cally observed(e.g., see Ref.[22]) that the QT interval

(which corresponds to the time in which the heart in each
beat “recovers”—electrically speaking—from the previous
excitation) exhibits frequent prolonged values before cardiac
death. Thus, when a time window is sliding on an H-ECG, it
is intuitively expected to find, more or less, the sameS val-
ues(when sweeping through various parts of the ECG) and
hence a smalldS value is envisaged. By the same token, in
an SD-ECG, we expect that, in view of the short-long-short
sequences of the QT intervals, the correspondingS values
will be much different(compared to H), thus leading to a
largerdS value[in the same context we may also understand
why the s /m values—and hencedSshuf, see Eq.(1)—are
larger in SD than those in H, as shown in Fig. 6]. The dis-
tinction between SD and H could also be understood in the
context of dynamic phase transitions(critical phenomena) as
follows: In SD, since the dynamic phase transition(cardiac
arrest) is approached, thefluctuationsof S are expected to
become larger, thus reflecting largerdS; such intense fluctua-
tions are not expected, of course, for H.

VI. CONCLUSIONS

The main point that emerged in the surrogate data analysis
presented in this paper is the key role of the quantity
dSshuf/dS. This ratio does the following:

(i) It reveals the non-Markovianity in all three types of
signals analyzed here, i.e., SES activities, AN and ECG. In a
Markovian case we havedSshuf=dS, but the reverse is not
always valid; it may happen thatdSshuf/dS=1, althoughdS
(anddSshuf) values drastically differ from that of the Markov-
ian (this is the case of ECG).

(ii ) It differentiates the ECG of healthy humans(H) from
those who suffered from sudden cardiac death(SD). More
precisely, in SD, thedSshuf/dS values of the RR(i.e., beat to
beat) intervals become closer to the Markovian value(i.e.,
unity) compared to those in H. Furthermore, in SD,both dS
and dSshuf values of the QT interval(corresponding to the
time in which the heart “recovers” from its previous excita-
tion) are larger than those in H.

As for the physical meaning ofdSshuf in ECG, it was
shown to be a measure ofs /m.

APPENDIX: INTERRELATION BETWEEN dSshuf AND s /m
IN THE CASE OF IID POSITIVE RANDOM

VARIABLES

If we consider a time seriesQk, where Qkù0,k
=1,2, . . . ,N, we obtain the quantitiespk=Qk/ol=1

N Ql, which
satisfy the necessary conditions[23] pkù0,ok=1

N pk=1 to be
considered as point probabilities. We then define[1–3] the
moments of the natural timexk=k/N as kxql=ok=1

N sk/Ndqpk

and the entropy S;kx ln xl−kxllnkxl, where kx ln xl
=ok=1

N sk/Ndlnsk/Ndpk. This appendix is solely focused on a
uniform distribution in the natural time domain.

We now consider the case whenQk are independent and
identically distributed(IID ) positive random variables. It
then follows that the expectation value Espkd
=EfQk/ol=1

N Qlg of pk equals 1/N,
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Espkd =
1

N
. sA1d

Equation(A1) results from the fact that, sinceQk are IID, we
have Efok=1

N Qk/ol=1
N Qlg=1=NEspkd. For the purpose of our

calculations, the relation between the variance ofpk,
Varspkd=Efspk−1/Nd2g, and the covariance ofpk and pl,
Covspk,pld=Efspk−1/Ndspl −1/Ndg, is of central impor-
tance. Using the constraintok=1

N pk=1, leading topk−1/N
=olÞks1/N−pld, and the fact thatQk are IID, we obtain
Efspk−1/Nd2g=Efspk−1/NdolÞks1/N−pldg=−sN−1dEfspk

−1/Ndspl −1/Ndg. Thus, we get

Covspk,pld = −
Varspkd
N − 1

. sA2d

The N dependence of Varspkd is obtained from

Varspkd =
1

N2EFS NQk

ol=1

N
Ql

− 1D2G , sA3d

where the quantity EfsNQk/ol=1
N Ql −1d2g is asymptotically

N-independent. The latter arises as follows: If EsQkd=m and
VarsQkd=s2s,`d, as a result of the central limit theorem
[24], we have Esok=1

N Qk/Nd=m and Varsok=1
N Qk/Nd=s2/N.

The latter two equations, for large enoughN, imply that
EfsNQk/ol=1

N Ql −1d2g<EfsQk/m−1d2g=s2/m2. Thus, Eq.
(A3) becomes

Varspkd =
s2

N2m2 . sA4d

We now turn to the statistical properties ofkxql. Using Eq.
(A1), we have

Efkxqlg = o
k=1

N S k

N
Dq 1

N
, sA5d

which, since[25] ok=1
N kq=Nq+1/ sq+1d+Nq/2+osNqd, reveals

that Efkxqlg is again asymptoticallyN-independent because it
approaches the value 1/sq+1d with a “small” 1 /s2Nd correc-
tion. The variance Varfkxqlgf=sdkxqld2g,

Varfkxqlg = EHFo
k=1

N S k

N
DqSpk −

1

N
DG2J , sA6d

after expanding the square and using Eqs.(A2) and (A4),
becomes

Varfkxqlg = o
k=1

N S k

N
D2q s2

N2m2

−
s2

sN − 1dN2m2o
k=1

N S k

N
Dq

o
l=1,lÞk

N S l

N
Dq

,

sA7d

which, using Eq.(A5), finally leads to

Varfkxqlg =
s2

sN − 1dm2hEfkx2qlg − E2fkxqlgj. sA8d

The proof of Eq.(A8) can be generalized for all linear
functionals ofpk of the formkfsxdl=ok=1

N fsk/Ndpk and yields

Varfkfsxdlg =
s2hEfkf2sxdlg − E2fkfsxdlgj

sN − 1dm2 . sA9d

In Fig. 7, we compare the theoretical result of Eq.(A8) with
synthetic (Gaussian) data which have values ofm, s, and
size s<1000d similar to those in ECG. Note that when one

uses the estimatorsdXd2=osX−X̄d2/N, instead of the unbi-

ased estimatorsdXd2=osX−X̄d2/ sN−1d, in order to find the
sample variance,N should replaceN−1 in Eq. (A8).

We now proceed to the statistical properties of the entropy
[1,3] S=kx ln xl−kxllnkxl. The expectation value

EsSd = EFo
k=1

N
k

N
lnS k

N
Dpk − o

k=1

N
k

N
pk lnSo

l=1

N
l

N
plDG

sA10d

can be evaluated as follows: we add and subtract the term
ok=1

N sk/Ndpk lnfol=1
N sl /Nd1/Ng, and then expand the resulting

term lnf1+ol=1
N sl /Ndfpl −s1/Ndg /ol=1

N sl /N2dg to first order in
fpl −s1/Ndg; finally, using Eq.(A8), we obtain

EsSd = o
k=1

N
k

N2lnS k

N
D − o

k=1

N
k

N2lnSo
l=1

N
l

N2D
−

s2fok=1

N
k2/N3 − sok=1

N
k/N2d2g

sN − 1dm2ol=1

N
l/N2

. sA11d

This equation reveals that EsSd depends slightly ons /m;
upon increasingN, the last term of Eq.(A11) decays as 1/N
(cf. the sums in the numerator and the denominator are of the
form Efkxqlg, for q=1 and 2, and asymptotically lead to a

FIG. 7. (Color) Comparison of the theoretical estimations(solid
lines) of dkxl and dS resulting from Eqs.(A8) and (A21), respec-
tively, with the values obtained(plus and cross, respectively) using
a Gaussian sample having values ofm, s, and sizes<1000d similar
to those in ECG. Here, as well as throughout the paper, the estima-

tor sdXd2=osX−X̄d2/N was used for the calculation of the sample
variance of the synthetic data, and thusN−1 was replaced byN in
Eqs.(A8) and (A21).
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constant 1/sq+1d, see the relevant discussion after Eq.(A5).
To simplify the calculation of the variance of the entropy

VarsSd, we define the two linear functionals

mfxkg = o
k=1

N
k

N
xk, sA12d

Lfxk,jg = o
k=1

N
k

N
lnS k

jN
Dxk, sA13d

and the constant time seriesK=hxkj :xk=1/N,k=1,2, . . . ,N.
Note that for both functionalsmfxkg andLfxk,jg, in view of
their linearity, we have

EHmFpk −
1

N
GJ = EHLFpk −

1

N
,jGJ = 0. sA14d

Using Eqs.(A12) and (A13), the entropy can be written, in
compact form, as follows:

S= L†pk,mfpkg‡, sA15d

and its expectation value is written as

EsSd = LfK,1g − mfKgln mfKg −
s2k1,u

sN − 1dm2mfKg
,

sA16d

wherek1,u=Efkx2lg−E2fkxlg.
The variance of the entropy, VarsSd=sdSd2, can then be

found by adding and subtracting the termsmfpkgln mfKg and
mfpk−1/Ng and using the expansionmfpkglnsmfpkg /mfKgd
=mfpkgmfpk−1/Ng /mfKg; this gives

VarsSd = EHSLfpk,1g − mfpkgln mfpkg − LfK,1g + mfKgln mfKg +
s2k1,u

sN − 1dm2mfKgD
2J ,

=EHSLFpk −
1

N
,1G − mfpkgln

mfpkg
mfKg

+ mF 1

N
− pkGln mfKg +

s2k1,u

sN − 1dm2mfKgD
2J ,

=EHSLFpk −
1

N
,mfKgG −

mfpkgmfpk − s1/Ndg
mfKg

+
s2k1,u

sN − 1dm2mfKgD
2J ,

=EHSLFpk −
1

N
,mfKgG − mFpk −

1

N
G −

m2fpk − s1/Ndg
mfKg

+
s2k1,u

sN − 1dm2mfKgD
2J ,

=EHSLFpk −
1

N
,mfKgeG −

m2fpk − s1/Ndg
mfKg

+
s2k1,u

sN − 1dm2mfKgD
2J . sA17d

Expanding the square in Eq.(A17), and using Eq.(A14), we find

VarsSd = ESL2Fpk −
1

N
,mfKgeG + 2LFpk −

1

N
,mfKgeGm2fpk − s1/Ndg

mfKg
+

m4fpk − s1/Ndg
m2fKg

−
s4k1,u

2

sN − 1d2m4m2fKgD . sA18d

If we assume that the distribution ofQk is skewnessless, i.e., EfsQk−md3̇g=0, the expectation value of the second term in Eq.
(A18) vanishes, whereas the third and the fourth terms are of order 1/N2 and hence negligible with respect to the first term.
Thus,

VarsSd = ESL2Fpk −
1

N
,mfKgeGD , sA19d

which can be explicitly written as follows:

VarsSd = EHFo
k=1

N
k

N
lnS k

mfKgNe
DSpk −

1

N
DG2J . sA20d

The right side of Eq.(A20) becomes similar to Eq.(A6), if we replacexq by x lnsx /mfKged; thus after expanding the square
and using Eqs.(A2) and (A4), we finally obtain
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VarsSd =
s2

sN − 1dm2Fo
k=1

N S k

N
ln

Nk

eok=1
N k

D2 1

N
− So

k=1

N
k

N2 ln
Nk

eok=1
N k

D2G . sA21d

A comparison of Eqs.(A19) and (A15) reveals the following: in order to find the entropy fluctuationdS, one simply has to
replace in Eq.(A15) mfpkg with mfKge and then directly take its variance according to Eq.(A9). Equation(A21) is just Eq.
(1) of the main text.
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