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A surrogate data analysis is presented, which is based on the fluctuations of the “e@dgfyied in the
natural time domairiPhys. Rev. E68, 031106(2003]. This entropy is not a static one such as, for example,
the Shannon entropy. The analysis is applied to three types of time series, i.e., seismic electric signals,
“artificial” noises, and electrocardiograms, and it “recognizes” the non-Markovianity in all these signals.
Furthermore, it differentiates the electrocardiograms of healthy humans from those of the sudden cardiac death
ones. If8S and 6S;,s denote the standard deviation when calculating the entropy by means of a time window
sweeping through the original data and the “shufflédhdomizegl data, respectively, it seems that the ratio
SSshufl 0S plays a key role. The physical meaning &&,sis investigated.
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[. INTRODUCTION data consist ofndependentdraws from a fixed probability
distribution of the dwell times; if we find significantly differ-
ent serial correlations in the data and their shuffles, we can
reject the hypothesis ahdependencesee paragraph 3.1 of

In an electric signal consisting dfl pulses, the natural
time was introduced1,2] by ascribing to thekth pulse the

value x,=k/N. The analysis is then made in terms of the Ref. [5]. In other words, the tested null h L
: .[5]. , ypothesis is tQat
couple (x¢, Q«), whereQ, stands for the duration of thah 50"y jenendent and identically distributedD) random

pulse. The entropf, defined[1,3] asS={xIn x)=()IN(x),  variables, i.e., that there are no correlations between the
where  ()=ZilPxie PEQdEnQn  and  (xInx)  lengths of consecutive intervals. If the origin@bntinuous
:E,’z‘:lpkxk In x, was found 3] to distinguish seismic electric time series is Markovian, then the null hypothesis for Qe
signals(SES activities from artificial noiseéAN), where the  should hold, i.e., th&, are IID. We emphasize that the ter-
latter terminology stands for electrical disturbances whichminology “Markovian” throughout this paper always refers
are recorded at a measuring site due to nearby man-made the original time series.

electric sources. More precisely, SES activities and AN have Here, as a measure of the natural time entropy fluctua-
Svalues smaller and larger than t&,) of a “uniform” (u) tions, we consider the standard deviat@hwhen we calcu-

distribution, respectivelyas the latter was defined in Refs. 12t the value ofS for a number of consecutive pulses and
[1,3,4). Furthermore, ion current fluctuations in membraneStudy howSvaries when sweeping this time window through -
channelgICFMC) haveS very close toS, [3]. the whole time series. We use the following three data sets:

; ; wo of them are those treated in R3], i.e., SES activities
The fact that a system contains nonlinear component%;nd AN. As a third one, we preferred to use, instead of

does not necessarily reflect that a specific signal we MeasU[REMC. the case of electrocardiograr&CG) for several

from the system also exhibits nonlinear features. Thus, b& <ons chief among of which ag@ they are publicly ac-
fore analyzing this signal by applying nonlinear teChn'q”eScessible’[S]; (b) instead of the single ICFMC example, a

we must first clarify if the use of such techniques is justified|arge variety of ECG are availablée., 105 individuals are
by the data available. The method of surrogate data has beperﬁqployed here, 10 healthy and 95 patignasid(c) the case
extensively used to serve such a purpsee Ref[S] fora ot £cG is similar to ICFMC, in the sense that tBealue in

review). Surrogate data refer to data that preserve certaik o turns out to be very close & as in ICFMC investi-

linear statistic properties of the experimental data, bu_t ar%ated in[3]. Note, however, that the intervals between heart
random otherwis¢6,7]. These data are prepared by various . ots fluctuate widely, e.g9]

procedures; for example, Sivet al.[7], in order to study the A yaneral agreement about whether normal heart dynam-
nature of dwell-time series in ICFMC, among other methodsics are chaotic or not is still lackinge.g., see Refi10] and

also used surrogate data which have been obtained by threge, .o oo therejn The most commonly used nonlinear

different procedures. The present paper aims, in general, @hmp|exity measures are fractal dimensions of various kinds
presenting a kind of surrogate data analysis using the entro%_g_ correlation dimension, Renyi dimensipngach of
fluctuations in the natural time domaisee below as dis-  1,oam measures different asp’)ects of Hiatisticson the at-
criminating stgtistics. Throu.ghout the paper, the surrogat@ actor. On the other hand, Liapunov exponents and the
data are obtained by shuffling t@, randomly and hence ,mqgorov-Sinai entropyKS entropy and entropy rates
their distribution is conserved. Applying such a procedure,are measures of théynamicson an attractor. Except for the
we do the following: consider the null hypothesis that they, g entropy and entropy rates, the other categories of com-

plexity measures assume a purely deterministic systeq,

see Ref[11]). Since a physiological time series may be due

*Electronic address: pvaro@otenet.gr to a mixed process, stochastic and deterministic, the use of
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FIG. 2. (Color) The (8S) values for the QRS intervalsee the
0.024 - (b) . text) of the seven groups of humans versus the time-window length.
[ ‘ The corresponding values for a Markovian time se(® pulses,

ooz n3 labeledM) are also plotted.
0.02} n2 ”;x -
1B 0018 i K - oS denotes the average of th# values calculated for a
K> sequence of single windows, e.g., three, four, and five pulses.
ooter e 8 ] Finally, (8S) stands for the5S values averaged over a group
0.014 A . of individuals, e.g., the 10 healthy subjects.
0012 n ] The present paper is organized as follows. In Sec. Il, we

investigate whether a distinction between SES activities and
AN can be achieved by théS value alone. Furthermore, we
examine if S can recognize the non-Markovianity in all the
signals investigated. In Sec. Ill, we attempt to shed light on

FIG. 1. (Colon (a) The &S values for each SES activity and the quantity 5,Sshuf calculated in a surrogat_e’andom|zgm
artificial noise versus the time-window length. The correspondingd@t@ set obtained by data “shuffling.” We find thi#, s in
values for a Markovian time serigd®? pulses are also plotted ECG is a measure af/ u (whereu ando stand for the mean
(green. (b) 3S versus Sy, (time-window range 3-5for all the value and the standard deviation of the corresponding inter-
SES activities and AN in(a). The straight line corresponds to Vals; see beloyv Section IV shows that théSy,s value dif-
8Sihu= 0S. fers from 8S, as expectede.g., the entropys is not static

) ) ) ) ) _ _ entropy, as mentioned abgvdhe prominent role of the ra-
frac_tal dlmen_s_lo_ns in physiological time series has begn OCtio S,/ 8Sin distinguishing ECG of healthy humans from
casionally criticized[11]. On the other hand, entropy is a tnose who suffered from sudden cardiac death is shown in
concept equally applicable to deterministic as well as stogec v, The conclusions are summarized in Sec. VI. Finally,

frg‘:‘)?/t'ﬁ] Fﬁ:gﬁﬁ;f?ﬁﬁ e-(rr?:grles F;’;’Qés‘gﬁl Fi)trsei‘leurgga't[%#ssse) ;hse €%n Appendix is reserved to derive an exact relationship be-
discriminating  statistics. The following point, however, tween oSy and o/ when Qg are 11D.

should be stressed. Complexity measures basediabic en-
tropy (e.g., Shannon entropyuantify statisticalorder in the IIl. THE POSSIBILITY OF EMPLOYING &S

time series. The underlying key property of these complexity TO “RECOGNIZE” THE NON-MARKOVIANITY
measures is the probability distribution of tfgevell times in

the) data analyzed; thus, the result of such computations We start by examining whether th#s values alone can
should be independent of permutations performed origge  distinguish SES activities from AN as well as “recognize”
quence of the dwell times in théme series as in a surrogate their non-Markovianity. Recal[2,3] that SES and AN are
(randomizegl data set obtained by data shuffling. On thetime series of a dichotomous nature which are non-
other hand, the entropy in natural tirtend the relevant mea- Markovian. In adichotomousMarkovian time series, the
sure$ considers, from its definition, theequentialorder(of ~ dwell times (Q,) are exponentially distributed; for such a
beats; in other wordsSis adynamicentropy, i.e., it captures series we plot, in Fig. (), the 6S value versus the time-
characteristics of the dynamics in a system. Additional comwindow length.(Since in the calculation o only ratios of
ments on the importance of the fluctuationssah ECG will Qy are involved, the result does not depend on the transition
be made in Sec. V. rates of the Markovian proce$3.he error shown in this case

In all examples, we use a sliding window of length threeis on average 7%(The calculation was made for a total
to ten pulses, except otherwise stated. Concerning the symumber of 16 pulses; see below. Note that this error de-
bols, we reservéS onlyfor the case when the calculation is creases upon increasing the number of pulses, i.e., it be-
made by asingletime window, e.g., five pulses. The symbol comes~2% for 1& pulses, which will be used latgin the

L | L | | | L | L | L | | | L
"0.01 0.012 0.014 0.016 _0.018 0.02 0.022 0.024 0.026
shuf
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same figure, we insert théS values calculated for the four 08— 71— 71— 7 71 1 —
SES activities(labeled K1, K2, A, and Yand the six AN I + RR| 4+ |
(labeled nl1 to npdepicted in Fig. 1 of Ref[3]. An inspec-

tion of Fig. 1(a) reveals the following conclusions. Firstp
distinction between SES activities and Aldoth of which
have estimation errors comparable to the aforementioned er-
ror of the Markovian is obvious. An inspection of Table | of
[12] reveals that the number of pulses in thieat of the
four) SES activities is around Z@or K2, U, and A(while for

K1 it is =310 and this is why we calculated here the Mar-
kovian case for 1®pulses. Second, concerning the possibil-
ity of “recognizing” the non-Markovianityas discussed and
shown in Refs[2—4] by independent proceduneshis could

be possibly supporteanly for the shorter time windows.e.,
three, four, and possibly five pulgder all SES activities as
well as for most AN(i.e., n6, n4, n3, n2, possibly n1, boot

for n5); see Fig. 1a).

We now investigate if thé&Svalues alone can “recognize”
the non-Markovianity in ECG. In a single singsormal
cycle of an ECG, the turning points are labeled with the
letters P, Q, R, S, and T. We used here the QT database from
the physiobani{8] (see also[13]), which consists of 105
15-min excerpts of Holter recordings as follows: 10 from the
MIT-BIH Normal Sinus Rhythm Databagée., healthy sub-
jects, hereafter labeled)HL5 from the MIT-BIH Arrhythmia

DatabaséMIT), 13 from the MIT-BIH Supraventricular Ar- 0% 5005 0_0'04_' 0006 0008 001
rhythmia DatabaséMSV), 6 from the MIT-BIH ST Change (b) 88,

Database(MST), 33 from the European ST-T Database

(EST), 4 from the MIT-BIH Long-Term ECG DatabagkT), 05— T

and 24 from sudden death patients from B3D) (BIH de- I *

notes the Beth Israel Hospijalln Fig. 2, we plot, for the 0.4 7

QRS-interval time series, th&s value averaged over each of
the aforementioned seven groups versus the time-window 03
length. Since all time series of these seven groups kM@ % .
intervals, we insert in the same figure the results calculated 0.2k
for a Markovian casécf. with the procedure mentioned in
the previous paragraplof comparable length=10°. We see

that the Markovian case exhibiiS values that are roughly 01

one order of magnitude larger than those of the seven groups A

of humans, which clearly points to the non-Markovianity of % —0.002 0004 0.008 0008 0.01 0.012

all the signals in these groups. We emphasize that the same (c) 0S

conclusions are drawn if we consider, instead of QRS, the

series of QT interva'si or the beat-to-beat |nter\(ﬂR) In FIG. 3. ThEG'/iValue, for each of the 105 individuals, versus
summary, thesS value alone can well recognize the non- the correspondingSyy, s value for the(a) RR, (b) QT, and(c) QRS
Markovianity in ECG. intervals. The identity of the individual associated with each point

can be found in Ref{26].

Ill. THE PHYSICAL MEANING OF  8Sqhy ties and AN) Note that, although these three slopes are more
) o or less comparable, they differ by amounts lying outside their
In Fig. 3(@), we plot, for each of the 105 individuals, the standard error. Furthermore, it may be worthwhile to men-
value ofa/ u versus the corresponding value &, (time-  tion that if we studyaltogetherthe RR, QT, and QRS inter-
window range 3-10 begt$or the RR intervals. The same is vals, for the 10 healthy humansly (Fig. 4), a good linearity
repeated in Figs.(8) and 3c) for the QT and QRS intervals, of o/u versusdSy, results with a slope 37.5+0.g., if
respectively. All three plots can be described by linear bewe study each of the three intervals separately, we find
havior, and a least-squares fitting to a straight line passinglopes that agree within the error margins, i.e., 37.5+0.4,
through the origin leads to the following slopes: 38.6+0.6,37.1+0.7, and 37.8+0.1 for the RR, QT, and QRS intervals,
36.8+0.2, and 40.1+0.4 for the RR, QT, and QRS intervalsrespectively. The origin of thiscommorbehavior merits fur-
respectively. This points to the conclusion thég&, pro- ther investigation.
vides, as intuitively expected, a measureréfe. (This, how- One could argue th&), may become IID upon their shuf-
ever, cannotbe supported with certainty for the SES activi- fling. In the Appendix, we show that, whe&p, are IID, 5Sis
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FIG. 4. (Color) The o/ u value for RR, QT, and QRS intervals & , T , T , T , |
of the ten H versus the correspondiag,,s value (time-window L + QT
range 3-10 beatsThe straight line results from a least-squares fit 96"_ 4
of all 30 points. For the identity of the individual associated with © L
each point, see Ref26]. L + |
@ |
actually proportional too/ u; the following relationship is L i
obtained: |
&
S TS -
huf= — 7] UL = B -
" uN-1] i \N U eNy/ N Lo
N ) 0 0.002 0004 _ 0006 0.008 0.01
k K b 08,1,
- 2 — In—— , (l) (k) !
N2 eN
k=1 € Q¥
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where oL + QR _
IS
N I 7 ]
E L - } 1 2) Q.QQQ)— + i
N2 2 2N . N ]
0 L o 4
and e denotes, as usual, the base of the natural logarithms. © ]
The relation(1) reveals thatéSy,s versusa/u must be a Q@"- “ * . -
straight line with a slope ranging from 34.2 to 40.4, for a ol 13
time-window length 3 to 10. This result is comparable with S * .
the slopes determined above from the analysis of the ECG [ | | | | | ]
data. °0 0002 0004 0.006 0.008 0.01 0.012
(C) 0 shuf
IV. ON THE DIFFERENCE BETWEEN S AND 8Sgnt FIG. 5. ThedS value, for each of the 105 individuals versus the

. . correspondingSyy¢ value for(a) RR, (b) QT, and(c) QRS inter-
We first comment on the difference betweiand 0Sy,s vals. The straight line, drawn in each case, correspondsSiq

in the SES activities a_nd_AN. In Fig.(, the value ofé5 =6S. For the identity of the individual associated with each point,
versus the correspondingS, s was plotted for each of the Ref[26]

ten signals discussed in Figi@. The average values in Fig.

1(b) have been calculated over the three time windows omixing of Q,, see Sec. |, it is naturally expected that in a
three, four, and five pulses, since we mentioned in Sec. IMarkovian case the two quantitie®S and 65, should co-
that the “recognition” of the non-Markovianity in all SES incide) Note that the reverse isot always true(thus the
activities becomes possible in this time-window range. If weequality 6S,~dS may also hold fomonMarkovian time
disregard n6, and despite the errors of around (886 the  serieg, as will be demonstrated below with precise ex-
time-window range 3-5 we may say that there is a system- amples.

atic tendency pointing to a value &S,/ S larger than We now proceed to compa@S, s with sSin ECG. Fig-
unity (the same conclusion is drawn if we take the averagesire §a) depicts thesS values, calculated for each of the 105
over the time-window range 3—10This is consistent with individuals, versus the corresponding,, for the RR inter-
the non-Markovianity of all these signals, because for a Marvals (time-window range 3—-10 beatsThe same is repeated
kovian case we expecbS;,,~=dS. (Since, by definition, in Figs. §b) and Hc) for the QT and QRS intervals, respec-
6Ssnyf corresponds to the entropy fluctuations upandom tively. In each case, we also plot the straight li#®,,~= S
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‘ ‘ ' ' P also the next sectignof which their points lie practically
+ H (i.e., within the error marginson the straight lineéS
S 7 =8Sns If we plot their S (or 6S;9) values versus the time
window (in a similar fashion to that in Fig.)2we find that
these values are distinctly smaller than those of the Markov-

|w@°&— < - ian case, thus making clear that these individuals cannot be
© ST | characterized as exhibiting Markovian behavi@his non-
g Markovianity holds forall H andall SD.)
Q-Q@/* 58 |

V. THE USE OF 6Sgp,/ S TO DISTINGUISH ECG
OF HEALTHY HUMANS FROM SUDDEN CARDIAC
0 o002 oo 0006 DEATH ONES

Ssshuf Here we focus only on two groups of ECG, namely H and

—= . SD, and examine whether they can be distinguished by
FIG. 6. (Color) The §Svalue, in each of the 10 kblack) and 24 — = . .
SD (red), for the QT intervals versugS, s (time-window range me:r;sf i?]ftg:\?arlag?%vigigﬁ \é\gf) ;aé%lg?ti)tgi ritlgf’ t];?rreiigh
3-10 beats Note that the values of the ordinates are appreciabl)}yp ', ges. 9
smaller than the’S value (=2 x 1072 of the Markovian time series four bea.ts(con5|de_r that themqllesmumber a”o,}"’ed for the
(10% events depicted in Fig. 2. natural time-domain analysis is three bgatsd(ii) a longer
(L) range of 50-70 beats. For the sake of convenience, we

to visualize that the vast majority of points fall below this define yEé_Sshuf/g’ and hence the following ratios are in-
line. The nonequality 06S;,sand S has also been verified vestigated:vy(7) and v (7), where denotes the type of in-
by applying the Wilcoxon paired signed-rank test recom-iapygl (i.e., 7=RR, QRS, or QT andsL refer to the range
mended[14] to be followed for non-Gaussian paired_data. sy gied(i.e., s=3—4 beats and.=50—70 beats
The tested null hypothesis is that the mean$f,;and 6S The calculated values fory(7) and v (7) for the three

are the same and is rejected at a level of significance well g of intervals are given, for all H and SD, in Table I. The
b_eloyv 0.01, since the data of Figgak-5(c) lead to norma_lly minima miny[»(7)] and maxima may »,(7)] (where « de-
distributed varlables_{:—8.29, —_6.81 and —6.32, r_es_p_ectlvely_ notes either the shortx=s, or the longer,<=L, range
[cf. the corresponding one-tailed asymptotic significance i$,q, g the healthy subjects are also inserted in two separate
given by P(Z<_Z)' €., the p_robab|l|ty to obtain a normally rows, for each type of interval and each range studied. These
distributed van_able whlch is _smaller t_hau]. Note that & minima and maxima are labelét},;, andH,.,, respectively.
least-squares fit to a straight line passing through the origifhe cases of SD which have smaller and larger values than
results in the following expreSS|on§S=(O.7610.0355§huf, Hyin and H, . (reported in each columrare marked with
58:(0.8510.0268_5huf, and §S= (0.94_10.03585h_uf for F|g_s. superscripts & and “b,” respectively.
5(@-5(c), respectively. The sampling ratés in ECG is A careful inspection of Table | leads to the following main
250 Hz; thus, if we take as an example the RR intervals, th@onclusion:All SD violate one or more H limitsi.e., they
experimental error in their .aIIocat|on is aroundFL/ The have values that are smaller thig,, or larger thanH ).
latter reflects in the calculation @S and 65 serrors which — \we intentionally emphasize that this conclusion is also
are drastically smaller than those required to eventually jusgrawn evenwhen disregarding the results for the QT inter-
tify a compatibility of the expressiodS=(0.76+0.036Sy,,s  vals.(Concerning the latter intervals: Only five SD out of 24
found from Fig. %a), with a straight line of slope equal to violate the H limits; however, irall SD, their S values
unity, i.e., 8S= 8Synus themselves are larger than those in H, see also Fig. 6. The
The difference betwee®dS and 8Sy,,; in ECG could be usefulness of this difference will be discussed in detail else-
understood in the context that the former depends on thwhere) In other words, when focusing our investigation
sequentiabrder(of beat3, as mentioned in Sec. |, while the solely on the RR and QRS intervalsl] SD violate one or
latter does not. Since shotand long) range correlations are more of the four H limits related torg(RR), ».(RR),
a usual featurésee Ref[15] and references thergim heart-  ¥(QRS, and » (QRS. This is important from a practical
beat dynamics, which are possibly destroyed become point of view, because the RR and QRS intervals can be
weakel upon randomizing the data, more “disorder” is intu- detected more easiland accuratelythan the QT by means
itively expected to appear after randomization, thus reflectof an automatic threshold-based dete¢tg., see Ref16],
ing 85, 8S. Furthermore, note that iall three plots of which evaluated the results of a detector that has been for-
Fig. 5 there are some drastic deviations from the straight lingvarded in Refs.[17,1§ to determine automatically the
85= 85, The origin of these deviations is currently being waveform limits in Holter ECG:
investigated in detail. A further inspection of Table | leads to the following ad-
Finally, we further clarify the aforementioned point that ditional comment: When investigating the RR intervalisne
the equality 6S=6S,,s does not necessarily reflect Mark- (which can be detected automatically more easily and pre-
ovianity. In Fig. 6, we plot, for the QT intervaldS,sversus ~ Cisely than the other intervalsi.e., studyingr{(RR) and
S (for a time-window range of 3—10 beatfor SD and H. ¥ (RR), the vast majority of S@22 out of 24 casgscan be
We see that there are several individu@isainly SD, see distinguished from H(only two SD, i.e., sel30 and sel47,
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TABLE I. The values of the ratio$Sy, ¢/ 5S in the short(s) range 3—4(v¢) or in the longer(L) range
50-70 beats$y|) in H (sel16265 to sel1745and SD(sel30 to sell715Zor the RR, QRS, and QT intervals.

3—4 beatqvy) 50-70 beatgy,)
Individual RR QRS QT RR QRS QT
sel16265 1.82 1.00 1.24 0.48 1.02 0.76
sel16272 1.74 0.99 0.98 0.77 1.08 1.11
sel16273 2.21 1.00 1.48 0.50 0.88 0.71
sel16420 1.55 0.98 1.08 0.53 1.09 0.90
sel16483 2.25 1.02 1.14 0.52 1.16 0.92
sel16539 1.42 1.06 1.25 0.50 1.08 0.65
sel16773 1.94 1.00 0.99 0.44 1.05 0.96
sel16786 1.42 1.00 1.19 0.56 1.04 0.77
sel16795 1.18 0.98 1.08 0.73 0.96 0.99
sel17453 1.38 1.01 1.02 0.56 0.98 0.81
Humin 1.18 0.98 0.98 0.44 0.88 0.65
Himax 2.25 1.06 1.48 0.77 1.16 1.11
sel30 1.29 1.11 1.09 0.65 0.72 1.09
sel31 0.98 1.09 1.17 1.23 0.94 0.62
sel32 1.39 1.1% 1.12 1.02 0.6% 0.90
sel33 1.08 0.99 1.00 0.88 0.82 0.99
sel34 2.11 1.2% 1.11 0.42 0.78 0.67
sel35 1.08 1.00 0.98 1.0 1.05 1.08
sel36 1.02 1.02 1.04 0.92 1.00 0.88
sel37 1.07 118 1.07 0.55 0.78 0.65
sel38 0.99 1.09 1.13 1.37 0.89 1.04
sel39 0.98 1.02 1.06 2.93 0.92 0.90
sel40 1.0% 1.00 0.93 0.7¢ 0.93 1.28
sel4l 1.0? 1.04 1.02 1.07 0.84 0.96
sel42 1.63 1.08 1.23 0.43 1.06 0.67
sel43 2.7% 1.1 1.05 0.56 0.78 0.89
sel44 0.9% 0.95 0.8¢ 2.28 1.4¢ 1.32
sel45 0.98 1.24 1.29 0.98 0.86% 0.79
sel46 1.03 1.01 1.03 1.00 0.84 1.01
sel47 1.56 0.97 1.03 0.45 0.97 1.01
sel48 0.82 118 1.44 1.48 0.68 0.73
sel49 0.93 1.17° 0.96" 1.22 0.7C% 1.14
sel50 1.08 0.98 0.98 0.93 1.2 1.50°
sel51 1.25 1.01 0.97 1.09 1.24 0.91
sel52 1.50 1.1% 1.22 1.06 0.73 0.68
sel17152 1.64 1.01 1.04 00 1.01 0.97

®These values are smaller than the minim(ig,,) value of 8S,.¢/ 8Sin H for each range.
PThese values are larger than the maximiiiy,,,) value of 5S¢ S in H for each range.

obey the corresponding H limijtsSpecifically, concerning values smaller thahl,;,(=1.18 and v (RR) values exceed-
v(RR), 15 SD have values smaller th&t,,=1.18, while ing H,,,{(=0.77). The RR time series of healthy subjects are
only one SD(i.e., sel43 has a value exceeding,,,=2.25; characterized by high complexite.g.,[15,19); this, if we
as fory (RR), 18 SD exceedH,,,,=0.77, while only two SD recall that in a Markovian series we intuitively expect
(i.e., sel34 and sel4have values smaller than,,;,=0.44. OSshuil 6S=1 (and hences;=1 andy =1), is compatible with

In what remains, we proceed to a tentative physical interthe fact that irall H both v(RR) and v (RR) distinctly differ
pretation of the above results, the main feature of whichrom unity (see Table). We now turn to SD by considering
focuses on the fact that most SD simultaneously ha(RR)  that for individuals at high risk of sudden death the fractal
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physiological organizatiorflong-range correlationsbreaks (which corresponds to the time in which the heart in each
down and this is often accompanied by emergencancbr-  beat “recovers’—electrically speaking—from the previous
related randomnesgsee[15] and references therginit is  excitatior) exhibits frequent prolonged values before cardiac
therefore naturally expected that in SD the valuegORR)  death. Thus, when a time window is sliding on an H-ECG, it
and » (RR) become closer to the Markovian valyge., s intuitively expected to find, more or less, the safeal-
unity) compared to H; thus, in SD(RR) naturally becomes ues(when sweeping through various parts of the BG@&d
smaller than the value 1.1@he correspondingi, limit)  hence a smalbS value is envisaged. By the same token, in
and v (RR) larger than 0.7qthe correspondingi,. limit).  an SD-ECG, we expect that, in view of the short-long-short
We now focus on the following important property of H: sequences of the QT intervals, the correspondneplues
althoughboth v{(RR) and v (RR) differ from unity, as men-  will be much different(compared to Bi thus leading to a
tioned, they systematically behavdifferently i.e., largerSSvalue[in the same context we may also understand
vg(RR)>1 while » (RR)<1. The exact origin of the latter why the o/u values—and hencéS,,,; see Eq.(1)—are
difference has not yet been identified with certainty, but thdarger in SD than those in H, as shown in Fig. Bhe dis-
following comments might be relevant: First, in the frame-tinction between SD and H could also be understood in the
work of the frequency-domain characteristics of heart-ratecontext of dynamic phase transitio(itical phenomengas
variability (e.g.,[20]), we may state thaty(RR) and v (RR) follows: In SD, since the dynamic phase transiti@ardiac
are associated with the high-frequen@yF, 0.15-0.4 Hy  arres} is approached, th#luctuationsof S are expected to
and low-frequencyLF, 0.015—0.15 Hyrange in the RR ta- become larger, thus reflecting larg#s; such intense fluctua-
chogram(“instantaneous” heart rate, 1/RRAn important  tions are not expected, of course, for H.
difference in the effect of the sympathetic and parasympa-
thetic modulation of the RR intervals has been notiged.,
see[20] and references therginSympathetic tone is be- VI. CONCLUSIONS

lieved to influence the LF component, wherésh sympa- The main point that emerged in the surrogate data analysis
thetic and parasympathetic activity have an effect on the H'f)resented in this paper is the key role of the quantity
componentrecall t_hat our re:'sults showS(RR)_> 1 (RR)]. 8Suuf 8S. This ratio does the following:

Second, at short time scalésigh frequencie it has been (i) It reveals the non-Markovianity in all three types of
suggested21] that we have relativelgmoothheartbeat 0s-  sjgnals analyzed here, i.e., SES activities, AN and ECG. In a
cillations associated with respiratioi.g., 15 breaths per p5rkovian case we havéSy,,= S, but the reverse is not
minute corresponds to a 4-sec oscillation with a peak in thy\ays valid; it may happen thaiS, / 83=1, althoughsS
power spectrum at 0.25 Hz, s¢&0]); this is lost upon ran-  and 55, » values drastically differ from that of the Markov-
domizing the consecutive interval, thus probably leading  jan (this is the case of ECG

to (larger variations—compared to the original experimental jj) ¢ differentiates the ECG of healthy humagis) from
data—between the durations of consecutive intervals anghose who suffered from sudden cardiac de@@B). More
hence t9 6, values larger thas, i.e.,, ard(RR) value  precisely, in SD, theSy,,/ 55 values of the RRi.e., beat to
larger than unity(an extension of the current anaIyS|s t0 apeay intervals become closer to the Markovian valie.,
surrogate sequence for a simultaneous recording of th@nity) compared to those in H. Furthermore, in Sith §S
breath rate and the instantaneous heart rate, upon consideriggq 8Snys Values of the QT intervalcorresponding to the
the points discussed in paragraph 4.6 of R@&l, could  time in which the heart “recovers” from its previous excita-
greatly contribute to clarifying the validity of such an expla- tjon) are larger than those in H.

nation. Such an argument, if true, cannot be applied, of Ag for the physical meaning 08Sy,s in ECG, it was
course, in the longer-range 50-70 beats and hence explaihown to be a measure of u.

why the opposite behavior, i.e55;,,s< S, then holds. The

latter finding must be inherently connected to the nature of

the long-range correlations. The existence of the latter iS\PPENDIX: INTERRELATION BETWEEN S, AND o/
pointed out from the fact thatin this range alspthe RR IN THE CASE OF IID POSITIVE RANDOM

intervals result insS values(~1073) which significantly dif- VARIABLES

fer from the MarkoviandS value (~107?) (the existence of It i . . h ~0 K

the long-range correlations in the heart-rate variability has we consider a time seriesQ, where Q=0,

: : o =1,2,... N, we obtain the quantitiep,=Q,/=N.,Q,, which
been independently established by several applications of the™ = K N IELel
detrended fluctuation analysis, e.g., 484,15 and refer- Salisfy the necessary conditiof3] p=0,%,; p=1 to be
ences therein considered as point probabilities. We then defiie3] the

: — —5N
A simplified interpretation of the results of Fig. 6, and in mements of the natural timg =k/N as (x%) =2, (k/N)%p

particular the reason why for the QT intervals the quanty and the entropy S=(x In x)-(In(x), where (xIn x)

is larger for the SD than for the H, could be attempted if we=Zit1(k/N)In(k/N)p,. This appendix is solely focused on a
consider thati) S could be thought of as a measure of the uniform distribution in the natural time domain.

“disorder” (in the consecutive intervals(ii) the essence of ~ We now consider the case whé} are independent and

the natural time-domain analysis is built on the variation ofidentically distributed(lID) positive random variables. It

the durations of consecutive pulses, &iid it has been clini- then follows that the expectation value (g

cally observed(e.g., see Ref[22]) that the QT interval =E[Q/Z],Q] of p, equals 1N,

011106-7
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1
Elpd = (A1)
Equation(Al) results from the fact that, sineg, are 11D, we
have E=}L,Q /=N ,Q]=1=NE(p,). For the purpose of our
calculations, the relation between the variance mf
Var(p) =E[(p—1/N)?], and the covariance of, and p;,
Cov(py, p)=E[(pk=1/N)(p;—1/N)], is of central impor-
tance. Using the constrairﬁl’z‘zlpkzl, leading top,—1/N
=3.(1/N-p), and the fact thaQ, are 1ID, we obtain
E[(pc— 1/N)?]=E[(px— 1/N)Z; . (1/N-p)]==(N- D)E[(p,
—=1/N)(p,—1/N)]. Thus, we get

Var(py)
C pP)=-— A2
ov(py, Pr) N-1 (A2)
The N dependence of Vp,) is obtained from
1 N 2
Var(py) = —E NQk -1] |, (A3)
N 2.Q

where the quantity ENQ/=,Q—-1)?] is asymptotically
N-independent. The latter arises as follows: () =u and

Var(Q,)=0%(<®), as a result of the central limit theorem

[24], we have B2} Q/N)=u and Var=[,Q/N)=d?/N.
The latter two equatlons for large enough imply that
E[(NQJ/ZN,Q - DA =E[(Qd/ n—1)?]=0?/u?. Thus, Eq.
(A3) becomes
0_2
Var(py) = N2 (A4)
We now turn to the statistical properties{gf!). Using Eq.
(A1), we have

N ka1
E[(xN] = kEl (N) N (A5)

which, sincg25] S kI=N%*1/(g+1)+N9/2+0(N9), reveals

that H(x%] is again asymptoticalliN-independent because it

approaches the value @+ 1) with a “small” 1/(2N) correc-
tion. The variance V&t 1[=(&xM)?],

Var[<xf4>]:E”é(§)q(pk—%)r}, (16)

after expanding the square and using E@2) and (A4),
becomes

N (K\E o
Var{<xq>]=2<ﬁ) N2

Sees (i) 2.6
(N-NZ? kz N I=§¢k N/
(A7)
which, using Eq(A5), finally leads to

var(x)]= ————{El*H] - TGN (A8)

(N-Dp?
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FIG. 7. (Color) Comparison of the theoretical estimatiqsslid
lines) of &) and 8S resulting from Eqs(A8) and (A21), respec-
tively, with the values obtaine@lus and cross, respectivelysing
a Gaussian sample having valueswfo, and sizg=1000 similar
to those in ECG. Here, as well as throughout the paper, the estima-
tor (6X)?=2(X-X)2/N was used for the calculation of the sample
variance of the synthetic data, and thus 1 was replaced bi{ in
Egs.(A8) and(A21).

The proof of Eq.(A8) can be generalized for all linear
functionals ofp, of the form(f(x))==.,f(k/N)p, and yields

AELF(x)] - B
(N-1)p? '
In Fig. 7, we compare the theoretical result of E48) with

synthetic (Gaussiap data which have values qf, o, and
size (=1000 similar to those in ECG. Note that when one

uses the estimatdsX)2=3(X-X)2/N, instead of the unbi-

ased estimatofsX)?==(X-X)2/(N-1), in order to find the
sample varianca\ should replacéN—-1 in Eq.(A8).

We now proceed to the statistical properties of the entropy
[1,3] S=(x In x)—{x)In{x). The expectation value

E(S)=E[k§l£|n<;> k%:\(lpkln<|21 Np,)]

(A10)

Var{{f(x))]= (A9)

can be evaluated as follows: we add and subtract the term
SR (k/N)p In[=],(1/N)1/N], and then expand the resulting
term I 1+2N,(I/N)[p,— (1/N)]/=N,(1/N?)] to first order in
[p—(1/N)]; finally, using Eq.(A8), we obtain

E(S) = E —In( k) % kzm(% LZ)
N k=1 N 1=1 N
02[2[(“:1 K2ING - (Ekzl k/NZ)Z]
R S

This equation reveals that(§ depends slightly onr/ u;
upon increasing\, the last term of Eq(A1l) decays as IN

(cf. the sums in the numerator and the denominator are of the
form E[(x%], for g=1 and 2, and asymptotically lead to a

(A11)
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constant 1(g+1), see the relevant discussion after B45). 1 1
To simplify the calculation of the variance of the entropy EY Ml p— N[ E)L| Pk~ N’f =0. (Al4)
Var(S), we define the two linear functionals
Using Egs.(A12) and (A13), the entropy can be written, in
compact form, as follows:
N
k =
m[Xk] = 2 ka, (A12) S L[pk! m[pk]]! (A15)
and its expectation value is written as
(TzKlyu
(N- 1) p’mK]’
k
L% &]= > Nln( §N>Xka (A13) (A16)
k=1
where k= E[(x*]-E(0)]-
The variance of the entropy, M@ =(5S)?, can then be
and the constant time seri&s={x}:x=1/N,k=1,2,... N.  found by adding and subtracting the termig,]in m[K] and

Note that for both functionalex,] andL[x,&], in view of ~ m[p,—1/N] and using the expansiomp,JIn(mp,]/mMK])
their linearity, we have =m[p]m[p,—1/N]/m[K]; this gives

E(S =L[K,1]-mK]JIn mK]-

Var(s) = {(L[pk, 1] - mipdin mipd - L[K, 1] + m{K]in m{K] + (N_‘f)%)z} ,
E{(L:p N 1] r{pdn ) [N_pk}'””ﬂg] N —a;;l;rjnm@])z}'
E{ (L i ﬁ'”ﬂq] - m[pk]mri?fsg L N —alj:lélrjnm&])z}
E{ (L:pk_ ﬁ’”ﬂg} ) m[pk ) ﬂ ) mZ[prknEﬂé]l e (N —olj;li:n[}I{] )2}
:E{<L:pk_ % | m[K]e] ) mz[prknE K(]llN)] o _Olj’;g“n{K])z}. (A17)
Expanding the square in EA17), and using Eq(A14), we find
var(9) = E(Lz{pk - %,m[K]e} " ZL[pk - %,m[K]e} mz[prknEK(]l NI, m4[‘::]2_m(5"\')] e fiki:nZ[K] ) (A18)

If we assume that the distribution @f, is skewnesslesse., E[(Qk—,u)é]zo, the expectation value of the second term in Eq.
(A18) vanishes, whereas the third and the fourth terms are of ordét drid hence negligible with respect to the first term.
Thus,

Var(S) = E< Lz{ Pk — % m[K]e] ) , (A19)

which can be explicitly written as follows:

N Kk K 1\ |?
vs=e] [ £ vl atalln-2)] |

The right side of Eq(A20) becomes similar to EqA6), if we replacex” by y In(xy/m[K]e); thus after expanding the square
and using Eqs(A2) and(A4), we finally obtain
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N ’ N 2
Var(S):L[E<EIn l:lk >E—<E£In Nk ) ] (A21)

(N-Du?| G \N T esflk/ NG N esflk

A comparison of Eqs(A19) and (A15) reveals the following: in order to find the entropy fluctuati®® one simply has to
replace in Eq(A15) mp,] with m[IK]e and then directly take its variance according to &p). Equation(A21) is just Eq.
(1) of the main text.
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