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Abstract:

It is explained, from first Principles, why in the Gutenberg-Richter law (stating that the

cumulative number of earthquakes N(>M) with magnitude greater than M is given by N(>M) ~ 10™") the
so called b-value is usually found to be around unity varying only slightly from region to region. The expla-
nation is achieved just by applying the analysis in the natural time domain, without using any adjustable

parameter.
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Introduction. The best known scaling relation for
earthquakes is the Gutenberg-Richter law (G-R).” It
states that the (cumulative) number of earthquakes
with magnitude greater than M occurring in a specified
area and time is given by

NGM) ~ 10" (1]

where b is a constant. Numerous publications have
examined the spatial and temporal variations of the b-
value, but it is currently considered® that it is generally
a constant varying only slightly from region to region
being in the range 0.8 <b < 1.2.

It has been recognized that G-R belongs to a broad
range of natural phenomena that exhibit fractal scal-
ing.zm Such a scaling reflects that the number of
earthquakes (occurring in a specified area and time) with
rupture areas greater than A is given by »*

N(A)=CA™ 2]

where d = D/2 and D stands for the fractal dimension. It
has been suggested4) that Eqgs. [1] and [2] are entirely
equivalent with b = d = D/2 and hence the universal
applicability of G-R implies universal fractal behavior of
earthquakes.m
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The main aim of the present paper could be
described as an attempt towards understanding the ori-
gin of the aforementioned constancy of the b- or D-value.
Nowadays, it is generally accepted that main shocks can
be considered in the frame of critical phenomena” (e.g.
see ref. 5) and references therein). Thus, keeping in
mind that criticality is accompanied with fractality, we
take here a power-law of the form of Eq. [2] or Eq. [1] as
granted, and then attempt, from general principles, to
identify from where this (almost) constancy of the b-
value stems. Our procedure mainly consists of two
basic steps: We first analyze the data obeying Eq. [1] in
the frame of the newly introduced concept of natural
time ”'* and then investigate which b-value(s) results in
maximizing the entropy. There have been many
attempts to explain why the b-value is universally
almost unity. However, to the authors’ knowledge, they
are all model dependent and frequently use the concept
of Self Organized Criticality (SOC)."” A usual line of
thought include computational efforts related to well-
known models of Burridge-Knopoff'” or Olami, Feder
and Christensen'” that are focused on the mechanical
phenomenology of earthquakes and actually capture
essential elements of the genesis of a seismic event. In
the frame of a single fault representation, the stick-slip
mechanism is usually considered, in which the friction
properties play the prominent role; we then additionally
take into account that earthquakes occur in large areas
characterized by a diversity of fault sizes and depths.
Along these lines, the role of the geometry of the fault
profiles, for example, in earthquake dynamics has been



430 P. A. VAROTSOS et al.

highlighted.ls) Despite the several attempts that have
been made towards G-R explanation, the most recent
efforts'” adopt the view that G-R has not yet been con-
nected with general principles in Physics.

The natural time. In a time series comprised of N
events, the natural time x, = k/N serves as an
index”” for the occurrence of the k-th event.
Concerning the analysis of seismicity, for example, the
evolution of the pair (x,, M,,) was considered,”™"""*
where M, denotes the seismic moment of the k-th
event, and the following continuous function F'(w) was
introduced:

< K
F(w):kglMOk exp (zwﬁ) 3]
where w = 27¢, and ¢ stands for the natural frequency.
Normalizing F'(w):

N
TLE
@ (w) = kgl e (w)N ) - lgl XD (Zw%) (4]
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M
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N
where D =M g / ;2‘1 My, we can define a kind of normal-
ized power spectrum (or it may be more appropriately
called energy spectrum) IT(w):

(w) = |®(w) | (5]

It has been shown that, when the system enters the
critical stage, the following relation holds:

_ 18 6cosw  12sinw 6]
Bw? Bw? Bw3
We focus on the properties of ®(w) or ®(¢) for natural
frequencies ¢ close to zero. If we regard p, in Eq. [4] as a
probability distribution, probability theory may lead to
the analogy that, for the range of small ¢, IT(w) or TI(¢)
reduces to the characteristic function for p,. We may
then be justified to further proceed with the probability
theory, that the moments of a distribution and hence the
distribution itself can be determined once the behaviour
of the characteristic function of the distribution is
known around zero. It has been argued'”"” that TI(¢),
for ¢ — 0, can be considered as an order parameter and
the corresponding probability density distribution, des-
ignated by p[I1(¢)] for ¢ — 0, is calculated by means of
the procedure explained in the next section. Since, as
mentioned above, we consider the earthquakes (main-
shocks) in the frame of critical phenomena, we will use
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hereafter p[I1(¢)] for ¢ — 0 in the calculation of Entropy.

The procedure followed and Results. We use
here the Shannon information entropy,zo) which is
defined as —Z p;Inp;. Shannon interpreted -X p;Inp;
(when considéring N distinct events 4, 1 <% szN, per-
taining to a model system; p, stands here for the proba-
bility for an event A, to occur in the game of chance with
N possible outcomes) as a measure of missing informa-
tion. This definition of the Shannon entropy —Z p;Inp,
conveys a dual meaning of the uncertainty and informa-
tion measure, which is usually seen as follows V- the less
uncertainty of the system or its state, the larger (and
more valuable) is the information we acquire as a result
of the measurement upon the system and vice versa.
Shannon entropy is static entropy and not a dynamic
one.'V"'™ Static entropy solely depends on the probabil-
ity distribution and hence remains unaltered when
changing the order of the events, e.g., upon randomiza-
tion (“shuffling”), while in a dynamic entropy the order
of consecutive events plays an important role.

The Shannon entropy is used, because our interest
here is focused on the statistical properties, while when
studying the dynamic evolution of a system, the
“entropy” in the natural time S = <ylny> — <y>In<y>
should be preferred."”

The Maximum Entropy Principle. After more
than 100 years, since the development of equilibrium sta-
tistical mechanics by the seminal work of Boltzmann and
Gibbs, we still do not have a widely accepted formalism
for non-equilibrium statistical mechanics. Gibbs proce-
dure concerns with the equilibrium state only and con-
sists of maximizing the quantity -2 p;Inp; , with respect
to the microstate probabilities p,, slubject to the relevant
constraints on the system. The maximization for the
equal probabilities case, i.e., p, = p, results in the well
known formula Boltzmann-Gibbs (BG) entropy, S,; = k
In W, where W = 1/p denotes the number of the accessi-
ble microstates. Since we deal here with non-equilibrium
system, we rely on Jaynes formalism.**" Jaynes,ZZ)’ZS)
inspired from Shannon’s interpretation, suggested to
look statistical mechanics as a form of statistical infer-
ence and to start statistical physics from a maximum
entropy principle. Jaynes realized Gibbs’ formalism of
equilibrium systems as just one example of a general
form of statistical inference (“MaxEnt”) which could be
extended to non-equilibrium systems. His hypothesis
that the phase-space paths adopted by non-equilibrium
systems (cf. paths rather than states are the central
objects of interest in non-equilibrium systems) are dis-
tributed according to MaxEnt. This has been found suc-
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Fig. 1. The probability density function of II(¢ = 0.05) in the nat-
ural time-domain. p[I1(¢ = 0.05)] versus I1(¢ = 0.05) for sever-
al values of b. Note how the feature of the curve changes sig-
nificantly upon increasing b fromb = 0.5tob = 1.5.

cessful in several cases,%) including the recoveryzg) of the
results of linear transport theory (Onsager, Kubo and
others) and SOC.” 1In MaxEnt, we compute
—; p(MDInp() where I' represents an entire path
through phase space, spanning the duration of the non-
equilibrium experiments in question.

Details of our procedure and the 7results
obtained. The following steps have been applied. We
first generated, for each b-value, artificial data comprised
from 500,000 events, that obey Eq. [1] above a certain
magnitude threshold (e.g., M = 0). This was repeated for
various b-values by keeping the total number (500,000)
of events constant. The data for b~1 should be equivalent
to the “shuffled”' data of an actual earthquake cata-
logue and their probability density functions (pdf)
should be the same. (As it is explained further in the
Discussion, we focus here on the self-similarity exponent
that stems from the distribution of the process’ incre-
ments only, not from the memory of the process. Note
that natural time domain analysis can serve two purpos-
es, the study of a dynamic evolution as well as a statisti-
cal study by investigating the original time series and the
shuffled one, respectively). The data were subsequently
analyzed in the natural time domain, for each b-value,
with the following procedure ”®"'"*?: First, calculation of
the power spectra II(¢) was made for small ¢-values,
e.g., ¢ = 0.05, since we are interested in the case of ¢ — 0,
for the reasons explained in the second section, for an
event taking time windows for 6 to 40 consecutive
events. This process was performed for all the events by
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Fig. 2. The calculated values of the differential entropy versus the
exponent b. The location of the maximum (around b = 1) does
not depend on the time-window length [ used in the calculation:
Solid line: | = 6-40; dotted: I = 6-100 consecutive events.

scanning the whole dataset via a Monte Carlo procedure.
As an example, we plot in Fig. 1, the quantity
plII(¢)] versus I1(¢) for ¢ = 0.05 for several b-values.
Recall, that this figure may be regarded as depicting the
probability distribution of the order parameter versus the
value of the order parameter. Since the fluctuations of
the order parameter become larger as we approach a
critical point,m we now study the Shannon Information
Entropy associated with p[TI(¢)] for ¢ =0.05 (a measure
of these fluctuations), which is expected to maximize
close to the critical point. In such a frame, we do not
make any use of the MaxEnt Principle. An alternative
frame, which does make use of MaxEnt in the Jaynes for-
malism, is the following: In a slowly driven system (e.g.,
that is frequently adopted in the study of self-organized
criticality), we investigate the same number of events
above a threshold — that obey power law energy distri-
bution — and examine which power law exponent cor-
responds to the maximum entropy, i.e., the most likely
behavior in nature.

In order to have a better accuracy, we compute, for
each b-value studied, the Shannon information entropy
of the continuous probability distribution p[I1(¢)] for
¢ = 0.05, ie., S, = — [p[II(¢)]Inp[I1(¢)]dII($) which is
usually termed differential entropy (e.g., see ref. 21)
and references therein) and it can attain negative values
also since the pdf may become larger than unity.
Finally, we investigate the resulting S;-values versus b.
Such a plot is given in Fig. 2 in which the S;-values are
depicted versus the corresponding b-values. An inspec-
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tion of this figure reveals that S, maximizes at a value of
b around unity in agreement with the experimental val-
ues. We emphasize that the location of this maximum at
b~1 is not practically affected if the time-window
length (1) chosen is increased from [ = 6-40 to [ = 6-100
as shown by the two lines in Fig. 2. Even if [ = 1000, its
value decreases only slightly, i.e., b~0.95. Since in the
experimental studies for the determination of the b-
value, earthquake populations of the order ~10%-10°
events are usually taken into account, we consider here
as satisfactory the agreement between the experimental
b-values and the one(s) obtained on theoretical
grounds. A study at larger [-values is still in progress, and
the results will be shortly reported elsewhere.
Discussion. In the present paper, we focused our
attention on the magnitude (moment) distribution of the
seismic events, without paying any attention to the
memory that may be present in an actual time series of
seismic events. However, we emphasize that, in principle,
two different origins of self-similarity in stationary
time-series ' can be distinguished: (1) the so-called
long memory and (2) the distribution of the process’
increments. Since our procedure has been solely
focused on the second origin in the present paper
(because we studied “shuffled” time series), we briefly
discuss below how one can distinguish which of the two
origins is responsible for the self-similarity observed.
We first comment on Hurst analysis, which results in
the so-called Hurst exponent H,. We emphasize that,
unfortunately, H, is not an estimator®” of the self-simi-
larity index even though it is so commonly thought. This
exponent gives only information on the correlations in
the time series measured at different time scales, and
hence reveals the memory of the investigated process
(e.g., when 1/2 < H,, < 1 the time series is called persis-
tent and it has a long-memory property, while when 4, =
1/2 the changes in the values of a time series are ran-
dom). The memory, however, is not the only possible ori-
gin of self-similarity,”” because a second origin of self-
similarity comes from the process’ increments
distribution. In order to make clear this point, let us con-
sider a process which has purely random increments
with infinite variance 28); this process can be self-similar
with index of self-similarity different from 1/2. An
example of such a process is”” the Levy stable motion
with stationary, independent and identically distributed
(ii.d.) increments with symmetric a-stable distribu-
tion. The Hurst analysis of that process gives H,, = 1/2,
which just shows the lack of memory, while the actual
self similarity exponent H may lie for example between
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0.8 and 1.0.” In other words, the widely used proce-
dures of Hurst analysis (exponent /) and Detrended
Fluctuation analysis (exponent a,,,) give us information
on memory only, and not on the distribution of the
process’ increments.

Hence, in order to investigate correctly the self-sim-
ilarity property, one should distinguish between the
long-memory property and the process’ increments dis-
tribution properties. Along these lines, the (random)
“shuffling” of the original data provides a useful tool: If
the self-similarity stems from the process memory only,
then the exponents of the shuffled data are different
from those in the original data and changed to Hj, = o
= 1/2 since the shuffling of the original data destroys the
correlations and the resulting time series is without
memory.m On the other hand, if the self-similarity
stems only from the process’ increments infinite vari-
ance, then the exponents of the original data do not
change, i.e., they are equal to those in the shuffled data.
In the general case, i.e., if the self-similarity stems from
both origins, i.e., memory and increments’ distribution,
we observe a partial change of the exponents H,, and
dpp- Thus, it becomes clear why in our procedure
here, the p[II(¢)] calculation was made on the shuffled
data, since we were solely interested on the incre-
ments’ distribution.

We now briefly discuss, in simple words, some
additional reasoning that led us to identify IT(¢) (¢ — 0)
as an order parameter. We started with the model,” that
a Seismic Electric Signals (SES) activity is emitted
when the stress (control parameter) in the focal area
approaches a critical stress o,,. Analysing the seismicity
in a candidate area, which can be estimated from the
observed SES data, the following interesting property
has been shown®™: If we set the natural time for the
seismicity zero at the initiation time of the concerned
SES-activity, we can form time series of seismic events in
natural time for various time windows as the number of
consecutive earthquakes N increases. When we compute
I1(¢) for each of the time windows, we found that, in the
range 0 < ¢ < 0.5, it approaches, as N increases from 6 to
some value less than 40, to that given by Eq. [6]. This
equation has also been found to describe in a universal
way all the SES activities observed to date.”
Interestingly, this approach of TI(¢) of seismicity to
that of SES activity happens only a few days before the
anticipated main shock. Such a behavior has been
checked to occur just before all strong earthquakes (M =
5.8) in Greece since 1988. In other words, I1(¢) abrupt-
ly increases from the value obeying Eq. [6] to the value
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II(¢) = 1, since the energy — and hence the M, value —
of the main shock exceeds by orders of magnitude the M,
values of the preceding small earthquakes. (This is
reminiscent of the case in which — under an external
field — the magnetization, which is a usual example of an
order parameter, abruptly changes from zero to a non-
zero value upon reaching the critical point). This
behaviour observed in Greece, is likely to be the case for
the main shocks in Japan and San Andreas Fault in view
of the following fact ' when sliding a window of the same
length, i.e., [ = 6-40 consecutive events through the cor-
responding seismic catalogues, we found that the most
probable value of TI(¢) (¢ — 0) is the one obeying Eq.
[6].

Finally, we point out that the procedure followed in
this paper is quite general. It shows that the natural time
domain analysis,®’7) if we consider II(¢) (¢ — 0) as an
order parameter, implies that data obeying Eq. [1] — or
Eq. [2] — should exhibit b-values around unity. In
other words, it seems that the almost constant value b~1
(for I < 10”) is just a consequence of the physical
expectation that the information entropy .S, associated
with p[I1(¢)] for small ¢ (i.e., the probability distribution
of the order parameter) should become maximum. The
extent to which the experimental results in diverse
fields verify this conclusion is currently explored.

The following clarification should be added. As
explained in the previous section, the main aspect from
which our present procedure stems, is the following: The
fluctuations of order parameter are expected to maxi-
mize close to the critical point. The Shannon information
entropy associated with p[T1(¢)] for small ¢ was just used
here as the most appropriate measure of the order
parameter fluctuations. Our present study refers, of
course, to a non-equilibrium critical system, but we
have already verified that the same idea holds for equi-
librium systems as well. In particular, our simulations for
the 2D and 3D Ising models do show that the Shannon
entropy associated with the corresponding probability
distribution of the magnetization maximizes close to the
critical temperature. Details on these results will be
shortly published elsewhere.

Conclusion. The natural time-domain analysis
reveals that the exponent b in the Gutenberg-Richter (G-
R) law, i.e., NM) ~ 10™, should be around unity as
actually observed. This conclusion is drawn without
using any adjustable parameter.
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