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Complexity measures are introduced that quantify the change of the natural entropy fluctuations at different
length scales in time series emitted from systems operating far from equilibrium. They identify impending
sudden cardiac deathsSDd by analyzing 15 min electrocardiograms, and comparing to those of truly healthy
humanssHd. These measures seem to be complementary to the ones suggested recentlyfPhys. Rev. E70,
011106s2004dg and altogether enable the classification of individuals into three categories: H, heart disease
patients, and SD. All the SD individuals, who exhibit critical dynamics, result in a common behavior.
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I. INTRODUCTION

The problem of distinguishing electric signals which, al-
though they appear to be similar, are emitted from systems of
different dynamics, still attracts a strong interest. Two char-
acteristic cases of major practical importance are as follows.
First, seismic electric signalssSESd activities, which are low-
frequencysø1 Hzd signals of dichotomous nature that have
been found in Greecef1–3g and Japanf4g to precede earth-
quakes, may appear to be similar to “artificial” noisessANd,
which are electrical disturbances emitted from nearby man-
made sources. It has been arguedf1,3,5g that SES activities
are emitted when the stress reaches acritical value in the EQ
focal area. Second, sudden cardiac deathsSDd, which is the
primary cause of mortality in the industrialized worldf6g,
may occur even if the electrocardiogramsECGd looks similar
to that of truly healthysHd humans. Sudden cardiac arrest
may also be considered as a dynamic phase transitionscriti-
cal phenomenond f7,8g.

Both cases have been treated in Ref.f8g, but here we only
focus on the second one. The time series will be analyzed in
the natural time domain. The natural timex is introduced
f5,9g by ascribing to themth pulse of an electric signal con-
sisting of N pulses the valuexm=m/N, and the analysis is
made in terms of the couplesxm,Qmd, whereQm denotes the
duration of themth pulse. The entropyS in the natural time
domain f9,10g is defined asS=kx ln xl−kxllnkxl, where
kx ln xl=ok=1

N pkxk ln xk, kxl=ok=1
N pkxk, and pk=Qk/on=1

N Qn.
It is dynamicentropy depending on thesequentialorder of
pulsesf8g. Here we calculate the value ofS for a number of
consecutive pulses and study how it varies within the record-
ing si.e., using a time window of certain lengthNw sliding,
each time by one pulse, through the whole time seriesd. Thus,
for a window of lengthNw, when starting from them0th
pulse, we haveSsm0,Nwd=kx ln xlw−kxlw ln kxlw, where
kx ln xlw=ok=1

Nw pk,wxk,w ln xk,w, kxlw=ok=1
Nw pk,wxk,w with pk,w

=Qm0−1+k/on=1
Nw Qm0−1+n, and xk,w=k/Nw. This variation is

quantified by the standard deviationdSs=dSNw
d of

hSsm0,Nwd ,m0=1,2, . . . ,N−Nwj. The value of dS may
change to a different valuedSshuf when repeating the same
calculation but aftershuffling the Qm randomly. In Ref.f8g
we showed that a distinction between SD and H can be
achieved when calculating bothdSshuf and dS at the same
stime-windowd length Nw and then studying their ratio
dSshuf/dS swhich is labeled bynd. Here we show that a simi-
lar distinction may be alternatively achieved if we introduce
appropriatemeasures that quantify thedS variability upon
changing the time-window length and, interestingly, their
values approach the value of the Markovian case in SD, who
exhibit critical dynamics. Furthermore, we show that the
measures suggested in this paper exhibit a certain type of
complementarity when compared to those discussed inf8g.

In ECG, the turning points are traditionally labeled with
the letters Q, R, S, T; see Fig. 1sad. fIn Fig. 1sbd we show, for
example, how the QT interval time-series can be read in
natural time.g The RRsbeat-to-beatd and QRS intervalsscf.
mainly the RRd can be automatically detectedf11–14g
swhich was followed hered more easily than the QT. In spite
of this fact, we intentionally study here all these three types
of intervals for the following reasons: It has been clinically
observed that the QT interval usually exhibits prolonged val-
ues before cardiac deathssee Ref. f15g and references
thereind. Interestingly, this clinical observation was foundf8g
to be consistent with the fact that in all SD, thedS sand
dSshufd values themselves of the QT intervals exceed those of
H; see Fig. 2sthe latter distinction between SD and H cannot
be attributed to the allocation error of the QT interval, see
Sec. VIII of Ref.f16gd. Since the latter systematic behavior is
not found when studying the RR or the QRS intervalsf8g, it
is interesting to investigate here whether a systematicity oc-
curs when employing the complexity measures suggested in
this paper. Actually, we find that the latter measures seem to
enable the distinction between SD and H when using the RR
and QRS intervals of the original time series. Furthermore,
and most interestingly, we pinpoint that, even when solely
using the most easily accessible values of the RR intervals,
such a distinction seems to be possible if we apply these
measures to both the original time series and the one ob-*Electronic address: pvaro@otenet.gr
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tained after shuffling theQm randomly. We use here the QT
Database from physiobankf17g, which includes 15 min re-
cordings of 10 H and 24 SDsas well as recordings from four
groups of heart disease patients, see belowd. Examples of the

dS values, calculated for the RR, QRS, and QT intervals in
the range 3–100 beats, are plotted in Figs. 3sad and 3sbd for
one H and one SD, respectively. As for the symbols, we use
the same convention as in Ref.f8g, i.e.,dS is used only when
the calculation is made by a single time windowse.g., five
pulsesd, while the symboldSstands for the average of thedS
values calculated for a sequence of single windowsse.g.,
three and four pulsesd. Finally, kdSl denotes thedS values
averaged over a group of individuals, e.g., ten healthy sub-
jects.

Before proceeding, however, it might be useful to reca-
pitulate the main differences of our procedure compared to
several other earlier attempts by other groups. The reasons
why the concept of entropy should be preferredscompared to
other quantitiesd as discriminating statistics in physiological
time series have been explained in detail in Ref.f8g. Further-
more, the advantages of using complexity measures based on
dynamicentropy sand not onstatic entropy, e.g., Shannon
entropyd, as, for example, the Kolmogorov-Sinai entropy
sKS entropyd, have been clarifiedf8g. Earlier attempts in the
ECG analysis have actually used measures related to dy-
namic entropy. For example, the so-called approximate en-
tropy sAEd f18g or sample entropysSEd f19g has been intro-
duced and later used by other authorsse.g., see Ref.f20g
where AE is applied beyond other measures; see also Ref.

FIG. 1. sColord sad Schematic diagramsnot in scaled of a three
heartbeat excerpt of an ECG in the usualsconventionald time do-
main. Only the durationsQm, Qm+1, Qm+2 of the QT interval
smarked in each single cycle of the ECG corresponding to one
heartbeatd are shown.sbd The QT-interval time series ofsad read in
natural time; the vertical bars areequallyspaced, but the length of
each bar denotes the duration of the corresponding QT interval
marked insad.

FIG. 2. sColord sad ThedSsQTd value for each of the 24 SD and
10 H ssee Table Id and sbd the average of thedSsQTd values—
designated bykdSsQTdl—along with their standard error deviation
for each of the two groups SD and H vs the time-window length.

FIG. 3. sColord ThedSvalue vs the time-window length for one
H sad and one SDsbd. Intervals: QT ssolid redd, QRS sbroken
greend, and RRsdotted blued.
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f16gd. Also, Costaet al. f21g introduced the multiscale en-
tropy sMSEd approach, the algorithm of which is based on
AE or SE, calculating the entropy at different scales. TheS,
which is also a dynamic entropy, as already mentioned, dif-
fers essentially from the other ones, because it is defined
f9,10g in an entirely different time domainfsee Fig. 1sbdg.
Moreover, the following has been found: When studying the
S values themselves, most SES activities can be clearly dis-
tinguishedf10g from the majority of AN, because they have
S values smaller and larger, respectively, than the valueSu
=0.0966 of the “uniform” distributionsas the latter was de-
fined in Refs.f10,22gd; on the other hand, when dealing with
ECG they all haveS values comparable, more or less, toSu
f8g, see alsof16g, thus not allowing a clear distinction among
their principal categoriessthe entropy values themselves
have been used in earlier attemptsd. This is achieved, how-
ever, when we quantify theS fluctuationsf8g and use ratios
of “shuffled” and “unshuffled”S fluctuations on fixed time
scalesf8g or ratios on different time scales that will be intro-
duced here in Sec. II. Thus, in order to discriminate similar-
looking electric signals emitted from systems of different
dynamics, the following seems to hold: signals that haveS
values more or less comparable toSu swhich is the case of all
ECGd can be better classified by the complexity measures
relevant to the fluctuationsdS of the entropy; if theS values
markedlydiffer from Su swhich is usually—butnot always—
the case of SES and ANd, the classification of these signals
should be preferably made by the use of theS values them-
selves.

II. THE NEW COMPLEXITY MEASURES PROPOSED.
THE DISTINCTION BETWEEN SD AND H

In classical thermodynamics, the systems are studied
close to equilibrium and the relevant quantities have a clear
physical meaning. In nonequilibrium systems, however, the
meaning of entropy and its treatment should be handled with
great cautionse.g.,f1gd, because there is at presentse.g., see
Ref. f23gd no unified statistical mechanical theory underlying
these systems.fIn transformations between nonequilibrium
stationary states, entropy might be a not well defined concept
f24g; the connection of the entropy to microscopic dynamics
is still a matter of intensive researchse.g., f25g and refer-
ences thereind.g In complex systems operating far from equi-
librium slike the case of heart dynamicsf26gd, long-range
correlations play an important rolessuch correlations are, of
course, of prominent importance in equilibrium systems as
well, when approaching a critical point, e.g., the “critical”
temperatureTc, i.e.,T→Tcd. Thus, in the latter systemsboth
correlationssi.e., short- and long-ranged, in general, are ad-
visable to be studied carefully and hence appropriate com-
plexity measures should be envisaged. This is, in simple
terms, the physics underlying the present paper and stimu-
lated the procedure that followed.

Along these lines, we introduce the ratios
dSisRRd /dSjsRRd, dSisQRSd /dSjsQRSd, and
dSisQTd /dSjsQTd for the RR, QRS, and QT intervals, re-
spectively, wherei, j denote the time-window length used in
the calculation ofdS. Assuming thatj , i, these three ratios

provide measures of thedS variability when a scalei
changes to a scalej . We select as a common scalesfor all
RR, QRS, and QTd thesmallest jvalue allowed for the natu-
ral time-domain analysis, i.e.,j =3 beats, and for the short
range ssd i =5, while for the longer rangesLd i =60 beats.
Thus, the following ratios are studied: lsstd
;dS5std /dS3std and lLstd;dS60std /dS3std, where t de-
notes the type of interval, i.e.,t=RR, QRS, or QT. We also
define the ratiosristd=dSisRRd /dSistd, which provide arela-
tive measure of thedS values of the RR intervals compared
to either QRS or QTsfor thesamenumber of beatsid. Here,
we will use for the short rangersstd;r3std and for the long
rangerLstd;r60std.

The calculated values for the complexity measureslk, rk

swherek denotes either the short,k=s, or the longer,k=L,
ranged are given, for all H and SD, in Table I. The minima
minHflkstdg and maxima maxHflkstdg among the healthy in-
dividuals for the RRst=RRd and QRSst=QRSd intervals
are also inserted in this table. We also include the corre-
sponding minima minHfrkstdg and maxima maxHfrkstdg for
sthe relativedS-variability measured r. For the sake of sim-
plicity, they are labeledHmin and Hmax, respectivelysand
jointly namedH limitsd. The superscripts “a” and “b” show
the cases of SD which have smaller and larger values than
Hmin and Hmax, respectively. In two individuals, i.e., sel41
and sel51, it is uncertain whether their measurelssQRSd
violates the valueHmin=1.15.

Table I reveals thatall SD violate one or moreH limits of
lssRRd, lLsRRd, rssQRSd, and rLsQRSd, and hence can be
distinguished from H. In other words, thedS-variability mea-
sures of the RR intervals, together with their relative ones
with respect to the QRSsi.e., four parameters in totald, seem
to achieve a distinction between SD and H. Note thatlksRRd
alonecan classify the vast majority of SD. Furthermore, at-
tention is drawn to the point that if we also consider the
lkstd values calculatednot in the original but in the random-
ized s“shuffled”d sequence ofQm, we find thatall SD violate
one or moreH limits of lksRRd and lk,shufsRRd ssee Table
VII of Ref. f16gd. This allowssusing again four parameters in
totald the distinction of SD from H by using the RR intervals
only.

Thus, we found that among the 10 parameters defined in
the original time series extracted from each ECGsor 20 pa-
rameters, in total, if we also account for the corresponding
parameters defined in the series obtained after shuffling the
Qm randomlyd, only four are required for the distinction be-
tween SD and H. We clarify that this seems to be extremely
difficult to achieve by chance. In order to visualize it, if we
assumesfor the sake of convenience onlyd independent and
identically distributedsiidd distributions of the parameters for
one subject, we find that the probability thatall four param-
eters are within the boundssminima and maximad set by 10
other subjectssi.e., the healthy onesd is s1−2/11d4<0.448.
Thus, the probability that all 24 additional subjects are clas-
sified as SD by pure chance iss1−0.448d24<6.4310−7, i.e.,
extremely small. Concerning the validity of this statistical
argument, we clarify that it does not remain valid if one just
picks four parameters out of the original 20 ones. Only if one
decides which parameters one wants to usebeforethe calcu-
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TABLE I. The variability measuressld, the relative onessrd, and the ratiosn;dSshuf/dS in the shortssd range and in the longersLd range in Hssel16265 to sel17453d and SDssel30
to sel17152d along with theirdS3–4sQTd values.

Individual

RR QRS QT RR over QRS RR over QT 3–4 beatssnsd
c 50–70 beatssnLdc

dS3–−4sQTd3103lssRRd lLsRRd lssQRSd lLsQRSd lssQTd lLsQTd rssQRSd rLsQRSd rssQTd rLsQTd RR QRS QT RR QRS QT

sel16265 1.72 2.38 1.19 0.52 1.27 0.88 0.88 4.01 2.44 6.62 1.87 0.98 1.29 0.48 1.02 0.75 0.38

sel16272 1.69 1.35 1.29 0.61 1.21 0.50 0.18 0.40 0.67 1.79 1.65 0.88 0.94 0.77 1.10 1.07 0.48

sel16273 1.61 2.69 1.16 0.59 1.30 1.11 1.11 5.05 3.17 7.65 2.18 0.99 1.46 0.50 0.88 0.71 0.24

sel16420 1.51 1.74 1.22 0.48 1.37 0.66 0.96 3.46 1.97 5.21 1.60 0.99 1.07 0.53 1.09 0.90 0.36

sel16483 1.43 2.37 1.23 0.49 1.31 0.68 0.25 1.22 0.96 3.37 2.27 0.99 1.17 0.52 1.15 0.92 0.35

sel16539 2.00 1.94 1.26 0.50 1.41 1.08 1.85 7.10 5.57 10.04 1.43 1.07 1.27 0.50 1.08 0.65 0.52

sel16773 1.92 2.61 1.21 0.49 1.31 0.70 0.90 4.84 1.49 5.54 1.85 1.01 0.91 0.44 1.05 0.97 0.55

sel16786 1.71 1.57 1.19 0.51 1.31 0.84 1.16 3.56 3.97 7.43 1.39 1.01 1.19 0.55 1.04 0.77 0.23

sel16795 1.77 0.99 1.24 0.55 1.16 0.56 0.77 1.37 2.87 5.08 1.10 0.98 1.05 0.74 0.95 1.00 0.56

sel17453 1.87 1.67 1.26 0.54 1.22 0.68 1.49 4.59 2.91 7.12 1.46 1.01 1.02 0.57 0.98 0.81 0.34

Hmin 1.43 0.99 1.16 0.48 1.16 0.50 0.18 0.40 0.67 1.79 1.10 0.88 0.91 0.44 0.88 0.65 0.23

Hmax 2.00 2.69 1.29 0.61 1.41 1.11 1.85 7.10 5.57 10.04 2.27 1.07 1.46 0.77 1.15 1.07 0.56

sel30 1.11a 0.89a 1.20 1.05b 1.28 0.56 0.51 0.43 1.73 2.73 1.15 1.08b 1.13 0.66 0.71a 1.10b 1.04b

sel31 0.96a 0.34a 1.39b 0.89b 1.30 0.84 1.10 0.42 0.80 0.32a 0.90a 1.06 1.15 1.23b 0.97 0.63a 3.01b

sel32 0.96a 0.67a 1.26 0.96b 1.16 0.65 0.23 0.16a 0.63a 0.64a 1.31 1.11b 1.13 1.02b 0.69a 0.90 1.14b

sel33 1.14a 0.77a 0.96a 0.52 1.21 0.53 0.79 1.17 2.41 3.50 1.07a 1.00 1.08 0.85b 0.83a 1.00 0.76b

sel34 1.87 3.04b 1.33b 1.22b 1.15a 0.85 0.40 1.00 1.16 4.12 2.13 1.11b 1.12 0.41a 0.77a 0.67 0.69b

sel35 1.12a 0.52a 1.24 0.66b 1.12a 0.44a 1.72 1.36 0.83 0.99a 1.02a 0.97 0.97 1.02b 1.05 1.07 6.45b

sel36 1.31a 0.62a 1.12a 0.51 1.26 0.60 2.35b 2.88 1.45 1.52a 1.03a 1.01 1.08 0.93b 0.99 0.89 2.08b

sel37 0.92a 0.71a 1.26 0.87b 1.11a 0.78 0.71 0.58 1.19 1.07a 1.11 1.17b 1.07 0.56 0.75a 0.64a 3.30b

sel38 0.91a 0.34a 1.27 0.65b 1.03a 0.50 0.65 0.34a 0.37a 0.25a 1.15 1.08 1.12 1.33b 0.89 1.03 2.71b

sel39 0.81a 0.11a 1.23 0.72b 1.17 0.58 0.80 0.12a 1.53 0.28a 0.97a 0.97 0.99 2.93b 0.93 0.89 2.44b

sel40 1.66 0.81a 1.14a 0.55 1.19 0.43a 0.12a 0.18a 0.20a 0.38a 1.03a 1.01 0.93 0.79b 0.94 1.30b 3.43b

sel41 1.14a 0.48a 1.18 0.70b 1.22 0.56 0.21 0.15a 0.80 0.68a 0.91a 1.04 1.06 1.05b 0.84a 0.96 1.53b

sel42 1.10a 1.81 1.16 0.51 1.31 1.01 0.95 3.40 1.62 2.89 1.63 1.09b 1.26 0.43a 1.06 0.66 0.95b

sel43 1.69 3.04b 1.24 0.77b 1.26 0.68 0.06a 0.23a 0.11 0.48a 2.79b 1.12b 1.08 0.56 0.77a 0.89 2.23b

sel44 1.18a 0.18a 1.52b 0.43a 1.02a 0.34a 0.59 0.25a 1.08 0.58a 0.91a 0.92 0.90a 2.25b 1.46b 1.33b 4.12b

sel45 0.92a 0.42a 1.16 0.73b 1.37 0.68 1.46 0.85 1.14 0.71a 0.97a 1.05 1.11 0.98b 0.88 0.79 1.71b
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lation of the values is the argument validsthis is the reason
why blind evaluation—defining all methods, parameters, and
criteria studying one set of data, andthen testing the signifi-
cance using an additonal set of independent data—is consid-
ered very important in medical applications and/or publica-
tionsd.

We now attempt a physical interpretation of the present
results, the main feature of which focuses on the fact that
both ratioslssRRd and lLsRRd become smaller, in the vast
majority of SD, compared to H. Recall that thedSsRRd val-
ues themselves cannot distinguish SD from H, see Fig. 4sad,
in contrast to the ratiosdSisRRd /dS3sRRd, see Fig. 4sbd. Be-
fore proceeding, we mention two points. First, for individu-
als at high risk of sudden death, fractal organizationslong-
range correlationsd breaks downssee Refs.f26,27g and
references thereind. The breakdown of fractal physiologic
complexity is often accompanied by the emergence ofuncor-
related randomnessor excessiveorderse.g., periodic oscilla-
tions appear in the heart rate recordings of “frequency”
<1/min, which are associated with Cheyne-Stokes breath-
ingd f26g. Second, if we calculatef8,10g the dS values in a
sdichotomousd Markovian sMd time seriessexponentially
distributed pulsesd, for a total number ofN=103 pulsessi.e.,
length comparable to that of the ECG analyzed hered, we find
that these valuessad lead tolssMd=1.20±0.03 andsbd differ
drastically, see Fig. 4sad, from thedSsRRd values themselves
of both SD and H sthus indicating that they exhibit non-
Markovian behavior on the whole; this is consistent with the
aspects that bodily rhythms, such as heartbeat, show com-
plex dynamics, e.g.,f26,27gd. The fact thatlssRRd in SD
becomes smaller than in H can now be understood as fol-
lows: Since H exhibit a high order of complexity, it is ex-
pected thatsevend their Hmin value s=1.43d should markedly
exceedlssMd. On the other hand, in SD this high complex-
ity is lost, and hence theirlssRRd values naturally approach
lssMd, thus becoming smaller. Interestingly, the SD average
value of lssRRd in Table I is 1.19, i.e., it coincides with
lssMd. sSuch a coincidence also occurs for the QRS inter-
vals in both H and SD, which agrees with the observations
f15g mentioned above that the prolonged QT intervals in SD
mainly originate from enlarged ST values, while their QRS
may remain thesame.d We now proceed to the interpretation
of our results related to the ratiolLsRRd. In H, it is expected
that sin view of the RR long-range correlationsf26gd the
corresponding values must be appreciably larger than
lLsMd=0.64±0.05, calculated in the Markovian casefFig.
4sbdg. We now examine the SD: If in SD “uncorrelated ran-
domness” appears, this reflects that theirlLsRRd values natu-
rally approachlLsMd, thus becoming smallerscompared to
Hd; this actually occurs in the vast majority of SD in Table I.
If in SD the aforementioned periodicities appear, it is natu-
rally expected to findlarge ssee Ref.f16gd dS values when a
time window of length around 60 beats or sosi.e., related to
the aforementioned “frequency”<1/mind sweeps through
the RR time series, thus resulting indS values even larger
than those in Hssince in Hno such periodicities appeard. The
latter actually occurs in the few cases marked with super-
script “b” si.e., those exceedingHmaxd in Table I sfor addi-
tional arguments on the interpretation, seef16gd.
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The fact that the overall behavior of the complexity mea-
sures introduced in this papersi.e., clear distinction of SD
from Hd is more or less similar to that of the measures dis-
cussed in Ref.f8g does not mean that the former measures
are similar to the latter, because, as we shall explain below,
they exhibit a certain type of complementarity in the follow-
ing sense: if in the frame of the one procedure an ambiguity
emerges in the distinction between SD and H, the other pro-
cedure gives a clear answer.sRecall that, as mentioned in
Sec. I, in Ref.f8g we discussed entropy fluctuations—and
ratios of “shuffled” and “unshuffled” entropy fluctuations—
on fixed time scales, while here we study entropy fluctua-
tions on different time scales.d This is consistent with the
findings of Ashkenazyet al. f28g that an approach dealing
with ratios on the same time scale and an approach dealing
with ratios on different time scalessor corresponding scaling
exponentsd are somewhat complementary. We now study, as
an example, the following two procedures: the one that uses
dSsQTd f8g and the other which combines the measuresl ,r.
The values of SD and H given in the last column of Table I
are classified into two classes: the larger values correspond
to SD, and the lower ones correspond to Hssee also Figs. 2
and 5d. Let us focus on the two lowermost SD values and the
uppermost H value. The former two correspond to sel33 and
sel34 fdS3–4sQTd=0.000 76 and 0.000 69, respectivelyg and

the latter one to sel16795fdS3–4sQTd=0.000 56g. In view of
their dS3–4sQTd values proximity, one may wonder whether
these two SD could be confused with H. This ambiguity can
be dissolved in light of the other proceduresi.e., l ,rd as
follows: Table I reveals that sel33 markedly violates both the
Hmin limit for lssQRSd as well asHmin for lssRRd sthe latter
can be visualized in Fig. 6d. As for sel34, theHmax limit of
lLsQRSd is strongly violated. We now turn to an alternative
example, i.e., sel47, which, by means of the method using
the complexity measuresl ,r sof the RR and QRS intervalsd,
could be confused with H, because a deviation of only
around 12% from theHmin limit of minHfrssQRSdg=0.18 is

FIG. 4. sColord The averagesdenoted by the bracketsd values of
sad: the dSsRRd, andsbd: dSsRRd /dS3sRRd for the SDssolid blackd
and Hsred circlesd vs the time-window length; the bars correspond
to the standard error of the mean. The results for a Markovian time
series are also plottedsgreen squaresd, but the bars here denote the
standard deviation.

FIG. 5. sColord The average of thedSsQTd values—labeled
kdSsQTdl—for each of the six groups labeled H, MIT, MSV, MST,
EST, and SDssee the textd vs the time-window length. The bars
denote the standard error of the mean.sThe corresponding standard
deviations overlap considerably and hence are not shown for the
sake of clarity.d The lowermost and the uppermost curve correspond
to H and SD, respectively, and hence coincide with the two curves
depicted in Fig. 2sbd.

FIG. 6. sColord The dS3–4sQTd values along with those of
lssRRd—andlLsRRd—for SD sredd and H sblackd. The individual
sel33, who is discussed as an example in the text, is marked with a
green column.
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noticed. This ambiguity can be dissolved by means of the
procedure usingdSsQTd as follows: sel47 hasdS3–4sQTd
=0.0029, which exceeds significantly, i.e., by a factor 5, the
corresponding value of sel16795, which has the largest
dS3–4sQTd=0.000 56 value among the H.

III. THE PROCEDURE TO DISTINGUISH SD FROM
PATIENTS

This section aims at distinguishing SD from patients,
where the latter terminology refers to individuals suffering
only from heart diseases. The QT Database of physiobank
we use here includes the following four groups of patientssa
fifth group that consists of four individuals only was disre-
garded for reasons discussed in Ref.f8gd: 15 individuals
from the MIT-BIH Arrhythmia Databaseslabeled hereafter
MIT d, 13 from the MIT-BIH Supraventricular Arrhythmia
DatabasesMSVd, 33 from the European ST-T Database
sESTd, and 6 from the MIT-BIH ST change DatabasesMSTd.
The values of l ,r ,n, dS3–4sQTd, lshuf, rshuf, and
dS3–4,shufsQTd of all these patients are given in Ref.f16g.

An inspection of the measuresl ,r ,n shows three facts.
First, all SD and all patients violate one or moreH limits.
Second,noneof the measuresl ,r ,n alone, nor a combina-
tion of two of them, can effectively differentiate the SD from
the patients. Third, if we consider the three measuresl ,r ,n
si.e., 16 parametersd altogether, we find that 20 SD out of 24
violate some of the limits of both patients and H, thus allow-
ing in principle a distinction of the vast majority of SD from
the other individuals. Thus, in summary, the consideration of
the quantitiessl ,r ,nd only does not lead to a distinction
betweenall SD and patients. The same conclusion is drawn
if we alternatively consider the quantitiessl ,lshuf,rd only.

We now turn to the investigation of thedSsQTd values. In
Fig. 5, the averagekdSsQTdl value for each group is plotted
versus the time-window length. It is intriguing that the re-
sults of the four groupssMIT,MSV,MST,ESTd of patients are
located between Hsthe lowermost curved and SDsthe upper-
most curved. We emphasize, however, that if we plot the
curves for each one of the 101 individualsfin a way similar
to that of Fig. 2sadg, we find that there are some patients
whose results overlap with either SD or H. Let us consider
only the limiting cases, i.e., the lowermost and the uppermost
curve, to be called hereafterdSsQTdmin and dSsQTdmax, re-
spectively, obtained in each groups of patients. In order to
distinguish SD from patients, we must appropriately dis-

criminate the overlap which refers to those patients that lie
above the uppermostdSsQTd curve of H; the latter curve
from now on will be calleddSsQTdmax,H. Thus, the limits of
the patients we are currently interested in do not extend from
dSsQTdmin to dSsQTdmax, since they must exceed
dSsQTdmax,H, i.e.,

dSsQTd . dSsQTdmax,H. s1d

The curve which corresponds to the one of the patients that
hasdSsQTd lying just above thedSsQTdmax,H corresponds to
a value which will be labeled hereafterdSsQTdmin8. Thus, if
we apply the condition

dSsQTdmin8 ø dSsQTd ø dSsQTdmax s2d

to each group of patients, we are left only with those patients
that actually overlap with SD.

We now recall that, as mentioned above, the measures
l ,r ,n altogether, which are in fact ratios ofdS values, en-
able the discrimination of the vast majority of SD from all
the otherssi.e., patients and Hd, while the dSsQTd values
themselves efficiently distinguishf8g all SD from H. This
motivates us to investigate whether a proper combination of
these two facts can serve our purpose, which refers to the
identification of all SD among the other individualsspatients
and Hd. Thus, we now compare the quantitiesl ,r ,n ,dSsQTd
altogether, of each SD, to the corresponding parameters of
only those among the patients that happen to havedSsQTd
values exceeding the corresponding values of H, i.e., obey
the conditions1d, or preferably the more accurate condition
s2d. Such a comparison reveals that some of the 17 param-
eters ofl ,r ,n ,dSsQTd, in all SD, lie outside the limits of
these patientssthe same happens, of course, if we compare
each SD to the limits of Hd. These results point to the con-
clusion that all 24 SD are distinguished from the patients
sand Hd. The same conclusion is drawn if we consider in-
stead the 17 parametersl ,lshuf,r ,dSsQTd. We emphasize,
however, that the study of the estimation errorsssee the Ap-
pendixd reveals that the confidence level for the distinction of
all SD from the patients becomes appreciably larger if we
combine all the measuresl ,lshuf,r ,rshuf,n sof all intervalsd
with the conditions2d applied to bothdSsQTd anddSshufsQTd
si.e., in reality, we then consider the limits of those patients
for whombothdSsQTd anddSshufsQTd values are larger than
those in H, as shown in Fig. 6 of Ref.f8gd.

We finally comment on three points. First, once the iden-
tification of SD has been completed, the distinction between
patients and H can be made by identifying as patients the
individuals for whom one or more of the aforementioned
parameters violate theH limits. Second, since it is known
that heart rate variability depends strongly on age, it is highly
recommended that when comparing values of the aforemen-
tioned complexity measures, the corresponding limits should
be taken from subjectsspatients, Hd of comparable age.
Third, we now focus on the importance of the sequential
order ofQm on the aforementioned complexity measures. We
prefer to deal with the results related to the RR intervals
since it is known that the healthy heart beats irregularly and
that the intervals between beatssi.e., the RR intervalsd fluc-

TABLE II. The number of SD and patients that can be distin-
guished from H when usinglksRRd or lk,shufsRRd alone.

Group
Total

number lksRRd lk,shufsRRd lksRRd andlk,shufsRRd

SD 24 23 10 24

MIT 15 14 6 14

MSV 13 13 2 13

EST 33 29 8 29

MST 6 5 0 5
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TABLE III. The confidence levels to distinguish SD from either H or patients when considering the estimation errorsem discussed in the Appendix and given in Table VIII of Ref.
f16g.

Method employed Confidence levels to distinguish SD

Aim Measures
Type of
intervals

No. of
para-

meters

Using the limits
from the data analyzed

Using
broader limitsc

All SD
%

All but
one SD

%

All but
two SDd

%
All SD

%

All but
one SD

%

All but
two SD

%

All but
five SDd

%

Distinction l, r RR, QRS, QT 10 .99 .99 .99 88 99 .99 .99

of SD l, r RR, QRS 4 63 95 .99 8 43 90 .99

from H l, lshuf RR 4 49 90 99 1 11 36 97

n RR,QRS 4 32 74 96 ,0.5 1 8 60

dS3–4sQTd QT 1 59 93 .99 11 39 77 .99

l, r, lsh, rsh, n,
dS3–4sQTd, dSsh,3–4sQTd

RR, QRS, QT 28 .99 .99 .99 .99 .99 .99 .99

Distinction l, r, n, dS3–4sQTda RR, QRS, QT 17 51 83 95 ,0.1 ,0.1 ,0.1 1

of SD l, r, lsh, dS3–4sQTda RR, QRS, QT 17 62 91 98 ,0.1 ,0.1 ,0.1 1

from patients l, r, lsh, rsh, n,
dS3–4sQTd,

dSsh,3–4sQTdb

RR, QRS, QT 28 95 .99 .99 16 41 68 98

aConsidering the limits of those patients that havedS3–4sQTd larger than those in H.
bConsidering the limits of those patients that haveboth dS3–4sQTd anddSsh,3–4sQTd larger than those in H.
cBy amountsem given in Table VIII of Ref.f16g.
dWhen stating, e.g., “All but one,” it means when allowing,at the most, one SD—out of 24—to be misinterpreted as being H or patient, respectively.
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tuate widely, following complicated patternsf29g. Let us in-
vestigate, for example, the possibility of usinglksRRd alone
to distinguish the SD as well as the four groups of patients
from H, i.e., examine whether thelksRRd values of each
individual violate onesat leastd of the relevantH limits. The
results showssee Table IId that the vast majority of SD and
of each group of patients is well distinguished from H by
means oflksRRd. The situation drastically changes, how-
ever, if we use, instead oflksRRd, thelk,shuf valuesssee the
Tables V to VII inf16gd: only the minority of SD and of each
group of patients can be differentiated from H. Since the
calculation of thelksRRd values takes into account the se-
quential order ofQm, while thelk,shufsRRd values do not, this
points to the following conclusion: It is the sequential order
of beats that inherently contains the primary information
which enables the distinction between the SD and patients,
on the one hand, and the H, on the other. This might explain
why procedures based on the entropy in natural timeswhich
is dynamic entropy, affected by the sequential orderf7,8g,
see Sec. Id—and hence they consider the complexity mea-
sures mentioned in the preceding sections—can achieve such
a distinction, while a static entropyse.g., Shannon entropy,
see Ref.f8gd cannot.

IV. CONCLUSIONS

First, in SD, thedSvalues depend on the length scale in a
way significantly different from that in H. Hence these two
groups of humans can be well distinguished. Second, the SD,
who exhibit critical dynamics, havel valuessbeing, in fact,
ratios of dS values, as mentioned aboved which approach
those of the Markovian case. This shouldnot be misinter-
preted as showing that the corresponding time series are of
Markovian nature, because thedS values themselves are ap-
proximately one order of magnitude smaller than those of the
sdichotomousd Markovian time seriesfsee Fig. 4sad and Ref.
f8gg. Third, the quantitiesl, lshuf, r, rshuf, n, dSsQTd, and
dSshufsQTd altogether seem to enable the classification of
individuals into the three categories: H, patients, and SD.

APPENDIX: THE INFLUENCE OF THE ESTIMATION
ERRORS ON THE PROCEDURES FOR THE DISTINCTION

OF SD

Beyond the error introduced by the use of an automatic
threshold detector for the allocation of the corresponding in-
tervalsscf. this is largest for the QT and smallest for the RR
intervalsd, the following two sources of errors must be con-
sidered f7,8g: First, an estimation error emerges when
analyzing—instead of the original time series of lengthl
<103—smaller lengthsl8, which, however, still significantly
exceed the time-window lengths used, for examplel8<2
3102 sthe errors associated with the measures in the short
range,s, are smaller from those corresponding to the longer
range,L, because for the latter range thel / l8 values—due to
the restricted length of the records available—are small, thus
not allowing more reliable statisticsd. Second, a source of
sstatisticald error in the results emerges when considering the
ratiossd dSshuf/dS si.e., when dealing withn andlshufd instead

of dS itself. While dS may be considered to have aunique
value for asgivend originalQm time series, the value ofdSshuf
depends on the randomly shuffledQm series each time se-
lectedscf. such differences are well knownf30g when deal-
ing with randomized series offinite lengthd. This is why the
n values given in Ref.f8g for SD and H do not fully coincide
with those tabulated in the present paper. To account roughly
for the extent of this statistical error, we averaged here the
dSshuf values calculated over a numberse.g., 20d of randomly
shuffledQm series generated from thesameoriginal series
and then the corresponding standard deviation was esti-
mated.

The final results on the above sources could be summa-
rized as follows: Thespercentaged estimation error was
found to be around 10%scf. this is anaveragevalued for the
complexity measuresl ,lshuf,r ,rshuf,n associated with the
RR and QRS intervals. Furthermore, since the error in the
dSsQTd may reach 20%, the estimation error in those of the
complexity measures that involvedSsQTd may be as high as
<30%. Upon considering such error levels, hereafter called
“plausible estimation errors”ep, a study of each of the meth-
ods for the distinction of SD was made. The study was re-
peated by assuming largerspercentaged estimation errors,
hereafter labeled “modified estimation errors”em, calculated
from

em = epS1 +
Hmax− Hmin

Hmax+ Hmin
D sA1d

for each parameterssee Table VIII in Ref.f16gd. Both studies
led, more or less, to the same results. The calculation, in each
study, was made as follows: Each parameter was assumed to
be equal to its valuesinitially estimated from the original
time series availabled multiplied by a number randomly se-
lected in the range 1±ep or 1±em, respectively, and then each
of the methods for the distinction of SD was applied. This
application was repeated, for each method, 103 times via
Monte Carlo and relevant conclusions have been drawn for
both studies. The extent to which these conclusions hold was
also investigated in the followingextremecase: the limits of
the parameters of Hsand patientsd, which are automatically
adjusted for each “random” selection of the values described
above, have been assumed toadditionally relax by sextrad
amounts equal toep or em. sSuch a “relaxation” faces the
extremepossibility that the populations of H and patients
treated here are not considered large enough to allow a pre-
cise determination of their limits, and hence future increased
populations’ studies could somehow broaden these limits by
extra amounts as large asep or em.d

The following conclusions were finally drawn concerning
the distinction between SD and Hssee also Table IIId:
Among the four methods suggestedsi.e., two in Ref.f8g and
two in Sec. IId, the one that uses the measuresl, r sassoci-
ated, however, withall three types of intervals, i.e., 10 pa-
rameters in totald seems to be robust in the following sense:
when assuming the error levels mentioned above, the use of
l, r still allows with a confidence level above 99% the dis-
tinction of all SD from H.(Then a calculation similar to that
given in Sec. II concerning the probability that all 24 sub-
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jects are classified, by means of 10 parameters, as SD by
pure chance—based on the limits set by 10 other subjects—
results inf1−s1−2/11d10g24<0.03, i.e., too small.) The con-
fidence level decreases to 63%, 49%, 32%, and 59%, respec-
tively, when using four parameters or one parameter only as
follows: First: lksRRd and rksQRSd; second:lksRRd and
lk,shufsRRd; third: nksRRd and nksQRSd; fourth: dS3–4sQTd.
If we investigate the aforementioned extreme case of the
additional “relaxation” of theH limits, the capability for the
distinction ofall SD still remains with the following results:
In the case of usingl ,r sof all intervalsd, the confidence
level in distinguishingall SD is 88%, while it becomesap-
preciably higher, i.e., larger than 99%, if we use the quanti-
tiesl, r, lshuf, rshuf, n, dS3–4sQTd, dS3–4,shufsQTd altogether.
When using, however, four parameters only in the first three
combinations mentioned above, the confidence level de-
creases to 90%, 36%, and 8%, respectivelyfand to 77%
when usingdS3–4sQTdg, even when allowing two at the most
SD—out of 24—to be misinterpreted as being H. As for the
corresponding conclusions related to the distinction of SD
from the patients, these can be drawn on the basis of the
values given in the lower part of Table III.

In summary, the study of the estimation errors reveals that
sif the limits of the parameters willnot be broadened by
future investigationsd we can satisfactorily distinguish the
totality of SD from H as well as discriminate the totality of
SD from patients, upon employing the quantities
l ,lshuf,r ,rshuf,n ,dS3–4sQTd ,dS3–4,shufsQTd altogether, i.e.,
the sixth and the last method, respectively, in Table III. These

quantities also allow the distinction of thetotality of SD
from H sas well as distinguishing thevast majorityof SD
from the patientsd, even if their limits will be eventually
broadenedsby emd.

The following remark should be added concerning the
number of parameters required to achieve the desired distinc-
tion: In reality, only twelveindependentquantitiesfi.e., the
six dSkstd and the six dSk,shufstd, where k=s,L and t
=RR,QRS, QTg are extracted from the experimental data.
Thus, for example, beyonddS3–4sQTd or dS3–4,shufsQTd,
eleven additional parameterssout of 26d of the ratios,
l ,lshuf,r ,rshuf,n, are in principle required to be used for the
distinction. These twelve quantities, however, shouldnot be
fortuitously selected, but the following points must be care-
fully considered:sid priority should be given to the eight
parameters associated withl values andlshuf sor nd values of
RR and QRS,sii d using, at least, oner parameterfinvolving
dS3–4sQTd or dS3–4,shufsQTdd, andsiii d examining whether the
totality of the parameters used can actually reproduce the
aforementioned twelvedS values determined directly from
the data. However, in order to avoid the difficulty arising
from the completenesssor notd of the aforementioned selec-
tion, at the present stagesi.e., until an appreciably larger
number of H and patients will be analyzed to allow a better
precision in the determination of the corresponding limitsd,
the preceding paragraph recommends to use—instead of
twelve—all the 28 parameters associated with the quantities
l, lshuf, r, rshuf, n, dS3–4sQTd, anddS3–4,shufsQTd.
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