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In section I, we present some background material,
while sections II, III and IV provide the proof, in detail,
of the positivity, concavity and Lesche stability, respec-
tively, of both the variance κ1 and the entropy S in the
natural time domain. Section V is reserved for the pre-
sentation of a more general theorem, while in Table I we
give the date and the station at which the SES activities
and AN, depicted in Fig.1 of the main text, have been
recorded.

I. BACKGROUND MATERIAL

We first review some of the basic properties of the real
functions g(x) = x2 and f(x) = x lnx defined on the
closed interval [0,1] (more accurately we consider f(x) =
{x lnx ∀ x ∈ (0, 1], 0 if x = 0} ). These are depicted in

TABLE I: The date and station at which the SES activi-
ties and AN, depicted in Fig.1 of the main text, have been
recorded. For the location of the stations see Ref.[1]

Signal Station Date Time(UT)
T1 MYT 04 Apr. 2003 14:10
C1 MYT 02 Apr. 2003 12:25
P1 ROD 26 Oct. 2003 03:34
P2 ROD 04 Nov. 2003 19:39
E1 KER 05 Oct. 2003 04:33

n7 LAM 12 Jan. 2003 08:14
n8 LAM 22 Aug. 2002 16:37
n9 LAM 25 Aug. 2002 09:19
n10 LAM 17 Aug. 2002 16:48
n11 LAM 12 Oct. 2003 07:40
n12 IOA 10 Jan. 2004 18:58
n13 PIR 09 Mar. 2004 04:44
n14 PIR 12 Mar. 2004 07:33

∗Electronic address: pvaro@otenet.gr
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FIG. 1: The functions g(x) and f(x) in the closed interval
[0,1].

Fig.1, and note that the following two inequalities hold:

0 ≤ g(x) ≤ 1, (1)

0 ≥ f(x) ≥ −1

e
. (2)

We now proceed to two very simple Lemmas:

Lemma 1 Both g(x) and f(x) are continuous in the in-
terval [0,1].

Proof: For g(x) this is trivial; for f(x) it is also trivial
for x ∈ (0, 1] and since limx→0 f(x) = 0, f(x) is also
continuous at x = 0.

Lemma 2 Both g(x) and f(x) are convex in the interval
(0,1].

Proof: It is suffiecient to show that the second derivatives
of these twice differentiable functions are positive. Indeed
g′′(x) = 2 and f ′′(x) = 1/x which are both positive for
x > 0.
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II. POSITIVITY OF κ1 AND S

We recall that

κ1 = 〈χ2〉 − 〈χ〉2, (3)

S = 〈χ lnχ〉 − 〈χ〉 ln〈χ〉, (4)

where the symbol 〈 〉 stands for

〈F (χ)〉 =

N∑

k=1

pkF (
k

N
) (5)

and pk denotes:

pk =
Qk∑N
n=1Qn

. (6)

In order to prove the positivity of κ1 and S, we shall
make use of the following well known theorem[2] (see also
12.411 at page 1101 of Ref. [3]):

Theorem 1 (Jensen’s inequality) If F is a convex func-
tion on the interval [a, b], then

F

(
n∑

k=1

λkxk

)
≤

n∑

k=1

λkF (xk)

where 0 ≤ λk ≤ 1, λ1 + λ2 + · · · + λn = 1 and each
xk ∈ [a, b].

Due to Lemma 2 both g(x) = x2 and f(x) = x ln x are
convex in [0,1]. Using in Jensen’s inequality λk = pk,
xk = k/N and Eq.(5), we obtain :

〈χ〉2 ≤ 〈χ2〉 (7)

and

〈χ〉 ln〈χ〉 ≤ 〈χ lnχ〉, (8)

respectively.

Obviously, Eqs. (7) and (8) imply the positivity of both κ1 and S. Another important property of κ1 and S is that
they are not only bounded from below by zero, but also bounded from above by N -independent bounds:

0 ≤ κ1 = 〈χ2〉 − 〈χ〉2 ≤ 〈χ2〉+ 〈χ〉2 ≤
N∑

k=1

pk

(
k

N

)2

+ 1 < 2 (9)

due to Eq.(1),

0 ≤ S = 〈χ lnχ〉 − 〈χ〉 ln〈χ〉 ≤ |〈χ lnχ〉|+ |〈χ〉 ln〈χ〉| ≤
N∑

k=1

pk|
k

N
ln
k

N
|+ 1

e
<

2

e
, (10)

due to Eq.(2).

III. THE CONCAVITY OF κ1 AND S

The concavity of κ1 and S with respect to pk is
straighforward[4] since they both have negative second
derivatives:

∂2κ1

∂pk∂pl
= − k l

N2
, (11)

∂2S

∂pk∂pl
= − k l

N2

(
N∑

m=1

pm
m

N

)−1

. (12)

IV. LECHE STABILITY OF κ1 AND S

Lesche stability[5] is considered[6–9] as an impor-
tant property to be satisfied by an entropic measure
Σ[p]. Following Ref.[6], Lesche stability implies that

for two slightly different distributions {pi}i=1,2,...N and

{p′i}i=1,2,...N , the corresponding entropic measures Σ[p]

and Σ[p′] do not change drastically (and also in a uniform
way, see below). Mathematically

∀ε > 0 ∃δ : ‖p− p′‖ < δ ⇒
∣∣∣∣
Σp− Σp′

Σmax

∣∣∣∣ < ε (13)

for any value of N , with the metric ‖p‖ =
∑N

i=1 |pi| and
Σmax is the maximum value of Σ.

We note[7] that, for a fixed value of N , Lesche Sta-
bility implies uniform continuity which is a rather trivial
statement, because a continuous function on a compact
set is automatically uniformly continuous (Heine 1870,
see below). It was pointed out[9] that Lesche condition
is a definition of natural uniform metric continuity. The
power of Lesche stability condition arises from the fact
that uniform continuity may not survive in the N → ∞
limit[8]. Thus, to avoid confusion, one should consider[8]
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that the mapping Σ[p], where p ∈ (R+)
N

, taken as a
function of N , converges to a uniformly continuous func-
tion in a uniform manner, i.e., ∀ε > 0 there exists δε
(which depends only on ε) such that ∀p, p′ ∈ (R+)

N
and

for every N ∈ Z+

‖p− p′‖ < δε ⇒
∣∣∣∣
Σ[p]− Σ[p′]

Σmax

∣∣∣∣ < ε. (14)

In our case of κ1 and S, there is at least one distri-
bution {pi}i=1,2,...N , the constant one with all pi = 1/N ,
for which for all N the corresponding values κ1,c and Sc,:

κ1,c(N) =

N∑

k=1

k2

N3
−
(

N∑

k=1

k

N2

)2

,

Sc(N) =

N∑

k=1

k

N2
ln

(
k

N

)
−

N∑

k=1

k

N2
ln

(
N∑

l=1

l

N2

)
,

as well as, in the limit N →∞:

lim
N→∞

κ1,c(N) = κ1,u =
1

12
, lim
N→∞

Sc(N) = Su =
ln 2

2
− 1

4
.

obtain well defined finite and positive values. We note

that both κ1,c(N) and Sc(N) are monotonically increas-
ing with respect to N and hence:

1

16
= κ1,c(2) ≤ κ1,c(N),

5 ln 2− 3 ln 3

4
= Sc(2) ≤ Sc(N).

Since Σmax should be by definition greater or equal than
each of these values for all N , we can replace Σmax in the
definition of Lesche stability by either 1

16 or 5 ln 2−3 ln 3
4 ,

respectively. Then, these positive numbers can be ab-
sorbed in ε and thus we retain the usual definition of
uniform metric continuity in a uniform manner (inde-
pendent of N). This is what we shall prove:

∀ε > 0, N ∈ Z+∃δ(ε) : ‖p−p′‖ < δ(ε)⇒ |Σ[p]−Σ[p′]| < ε.
(15)

Proposition 1 (Stability of κ1) The variance κ1 in the
natural time:

κ1[p] =

N∑

k=1

pk

(
k

N

)2

−
(

N∑

k=1

k

N
pk

)2

(16)

satisfies the condition (15), and hence is Lesche stable.

Proof: For every ε > 0, we can consider δ(ε) = ε/3 so
that if ‖p− p′‖ < δ(ε) we have:

|κ1[p]− κ1[p′]| =

∣∣∣∣∣∣

N∑

k=1

(
k

N

)2

(pk − p′k)−
(

N∑

k=1

k

N
pk

)2

+

(
N∑

k=1

k

N
p′k

)2
∣∣∣∣∣∣

=

=

∣∣∣∣∣
N∑

k=1

(
k

N

)2

(pk − p′k) +

(
N∑

k=1

k

N
pk

)
N∑

k=1

k

N
(p′k − pk) +

(
N∑

k=1

k

N
p′k

)
N∑

k=1

k

N
(p′k − pk)

∣∣∣∣∣ ≤

≤
∣∣∣∣∣
N∑

k=1

(
k

N

)2

(pk − p′k)

∣∣∣∣∣+

∣∣∣∣∣
N∑

k=1

k

N
pk

∣∣∣∣∣

∣∣∣∣∣
N∑

k=1

k

N
(p′k − pk)

∣∣∣∣∣+

∣∣∣∣∣
N∑

k=1

k

N
p′k

∣∣∣∣∣

∣∣∣∣∣
N∑

k=1

k

N
(p′k − pk)

∣∣∣∣∣ ≤

≤
N∑

k=1

(
k

N

)2

|pk − p′k|+
∣∣∣∣∣
N∑

k=1

k

N
(p′k − pk)

∣∣∣∣∣+

∣∣∣∣∣
N∑

k=1

k

N
(p′k − pk)

∣∣∣∣∣ ≤

≤
N∑

k=1

|pk − p′k|+
N∑

k=1

∣∣∣∣
k

N

∣∣∣∣ |p′k − pk|+
N∑

k=1

∣∣∣∣
k

N

∣∣∣∣ |p′k − pk| ≤

≤ 3
N∑

k=1

|pk − p′k| (17)

but since ‖p− p′‖ =
∑N
k=1 |pk − p′k| < ε/3, inequality (17) implies that

|κ1[p]− κ1[p′]| < ε (18)

which completes the proof.
Now, before proceeding to the final proof for the stability of the entropy S, we make use of a well known theorem[10]:

Theorem 2 (Heine 1870) If a function F (x) of a real variable x is continuous when a ≤ x ≤ b, then F (x) is uniformly
continuous throughout the range a ≤ x ≤ b.
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In Lemma 1 we proved that f(x) = {x lnx ∀ x ∈ (0, 1], 0 if x = 0} is continuous in the closed interval [0,1], and hence
it is also uniformly continuous in the same interval. Uniform continuity implies that

∀ ε
2
> 0, x, y ∈ [0, 1] ∃δ1(ε/2) : |x− y| < δ1(ε/2)⇒ |x lnx− y ln y| < ε

2
. (19)

Now, we can show that S is Lesche stable.

Proposition 2 (Stability of S) The entropy S in the natural time:

S[p] =

N∑

k=1

pk
k

N
ln
k

N
−
(

N∑

k=1

pk
k

N

)
ln

N∑

k=1

pk
k

N
(20)

satisfies the condition (15), and hence it is Lesche stable.

Proof: For every ε > 0, we can consider δ(ε) = min
[
eε
2 , δ1(ε/2)

]
so that if ‖p− p′‖ < δ(ε) we have:

|S[p]− S[p′]| =

∣∣∣∣∣
N∑

k=1

(pk − p′k)
k

N
ln
k

N
−
(

N∑

k=1

k

N
pk

)
ln

N∑

k=1

k

N
pk +

(
N∑

k=1

k

N
p′k

)
ln

N∑

k=1

k

N
p′k

∣∣∣∣∣ ≤

≤
∣∣∣∣∣
N∑

k=1

(pk − p′k)
k

N
ln
k

N

∣∣∣∣∣+ |x lnx− y ln y| , (21)

where x =
∑N

k=1
k
N pk and y =

∑N
k=1

k
N p
′
k. We now consider that

|x− y| =
∣∣∣∣∣
N∑

k=1

k

N
(pk − p′k)

∣∣∣∣∣ ≤
N∑

k=1

∣∣∣∣
k

N

∣∣∣∣ |pk − p′k| ≤
N∑

k=1

|pk − p′k| < δ(ε) ≤ δ1(ε/2) (22)

and hence (see condition (19))

|x lnx− y ln y| < ε

2
. (23)

Now, we return to inequality (21) to complete the proof:

|S[p]− S[p′]| ≤
∣∣∣∣∣
N∑

k=1

(pk − p′k)
k

N
ln
k

N

∣∣∣∣∣+ |x ln x− y ln y| <

<

∣∣∣∣∣
N∑

k=1

(pk − p′k)
k

N
ln
k

N

∣∣∣∣∣+
ε

2
≤

≤
N∑

k=1

|pk − p′k|
∣∣∣∣
k

N
ln
k

N

∣∣∣∣+
ε

2
≤

≤
N∑

k=1

|pk − p′k|
1

e
+
ε

2
, (24)

since we assumed ‖p− p′‖ =
∑N

k=1 |pk − p′k| < δ(ε) ≤ eε
2 ,

the inequality (24) becomes:

|S[p]− S[p′]| < ε

2
+
ε

2
= ε. (25)

which means that the condition (15) is obeyed for S, i.e.,
S is Lesche stable.

V. A MORE GENERAL THEOREM

The following general theorem seems to hold.

Theorem 3 Let F (x) : [0, 1]→ R which is:

1. uniformly continuous in [0,1]

2. strictly convex in (0,1]

3. twice differentiable in (0,1]

then the functional:

Σ[p] =

N∑

k=1

pkF

(
k

N

)
− F

(
N∑

k=1

pk
k

N

)

is:

1. positive

2. concave

3. Lesche stable.

Proof:
Positivity: Since F (x) is a convex function in the in-

terval (0,1], we apply Jensen’s inequality (Theorem 1)
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with λk = pk and xk = k/N and directly obtain:

F

(
N∑

k=1

pk
k

N

)
≤

N∑

k=1

pkF

(
k

N

)
⇒ Σ[p] ≥ 0

Concavity: For Σ[p] we have

∂Σ[p]

∂pk
= F

(
k

N

)
− k

N
F ′
(

N∑

k=1

pk
k

N

)
,

where F ′(x) is the first derivative of F (x), and

∂2Σ[p]

∂pl∂pk
= − l

N

k

N
F ′′
(

N∑

k=1

pk
k

N

)
. (26)

Since F (x) is convex and twice differentiable, then(e.g.
see 12.41 in page 1100 of Ref.[3])) its second derivative is

positive F ′′(x) ≥ 0. Thus, Eq.(26) implies[4] that ∂2Σ[p]
∂pl∂pk

is negative and hence Σ[p] is concave.

Lesche Stability: Following Ref.[5, 8], we shall prove
that ∀ε > 0 there exists δε (which depends only on ε)

such that ∀ p, p′ ∈ (R+)
N

and for every N ∈ Z+

‖p− p′‖ < δε ⇒
∣∣∣∣
Σ[p]− Σ[p′]

Σmax

∣∣∣∣ < ε. (27)

Let us first discuss about Σmax. By defining
{
pi = ci ≡ 1

N

}
i=1,2,...N

, we have

Σc(N) =

N∑

k=1

1

N
F

(
k

N

)
− F

(
N∑

k=1

k

N2

)

which as N tends to infinity is strictly positive, because F (x) is strictly convex, and moreover finite since:

|Σc(N)| =
∣∣∣∣∣
N∑

k=1

1

N
F

(
k

N

)
− F

(
N∑

k=1

k

N2

)∣∣∣∣∣ ≤
N∑

k=1

1

N

∣∣∣∣F
(
k

N

)∣∣∣∣+

∣∣∣∣∣F
(

N∑

k=1

k

N2

)∣∣∣∣∣ ≤M +M = 2M,

where M is an upper bound for F (x), which always exists( since F (x) is uniformly continuous in [0,1]).

Moreover, for the same reason

lim
N→∞

Σc(N) = Σu =

∫ 1

0

F (x)dx − F
(

1

2

)
,

where Σu > 0, due the fact that F (x) is strictly convex.
Thus, Σc(N) considered as a real sequence has the prop-
erty Σc(N) 6= 0 (strictly convex) and limN→∞ Σc(N) =
Σu 6= 0, then (see 4-21 in page 61 of Ref.[11]):

I = inf {Σc(N) : N ∈ N} > 0, (28)

and thus

Σmax ≥ Σc(N)⇒ 1

Σc(N)
≥ 1

Σmax
,

but

I < Σc(N)⇒ 1

I
>

1

Σc(N)
,

and hence

1

I
>

1

Σmax
, (29)

where I is a well defined positive real number, the infi-
mum of the positive sequence Σc(N).

Moreover, since F (x) is uniformly continuous, we have:

∀εI
2
> 0, x, y ∈ [0, 1] ∃δ2(εI/2) : |x− y| < δ2(εI/2)⇒ |F (x)− F (y)| < εI

2
. (30)

.
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We now proceed to the proof of the Lesche stabily, see condition (27): For every ε > 0, we can condider δ(ε) =
min

[
εI

2M , δ2(εI/2)
]

so that if ‖p− p′‖ < δ(ε) we have:

|Σ[p]− Σ[p′]

Σmax
| < 1

I

∣∣∣∣∣
N∑

k=1

(pk − p′k)F

(
k

N

)
− F

(
N∑

k=1

k

N
pk

)
+ F

(
N∑

k=1

k

N
p′k

)∣∣∣∣∣ ≤

≤

∣∣∣
∑N
k=1(pk − p′k)F

(
k
N

)∣∣∣+ |F (x) − F (y)|
I

, (31)

where x =
∑N

k=1
k
N pk and y =

∑N
k=1

k
N p
′
k. We consider that

|x− y| =
∣∣∣∣∣
N∑

k=1

k

N
(pk − p′k)

∣∣∣∣∣ ≤
N∑

k=1

∣∣∣∣
k

N

∣∣∣∣ |pk − p′k| ≤
N∑

k=1

|pk − p′k| < δ(ε) ≤ δ2(εI/2) (32)

and hence (see condition (30))

|F (x)− F (y)| < εI

2
.

We now return to inequality (31):

|Σ[p]− Σ[p′]
Σmax

| <

∣∣∣
∑N
k=1(pk − p′k)F

(
k
N

)∣∣∣+ |F (x) − F (y)|
I

<

<
1

I

N∑

k=1

|pk − p′k||F
(
k

N

)
|+ ε

2
≤

≤ 1

I

N∑

k=1

|pk − p′k|M +
ε

2
<

<
M

I
δ(ε) +

ε

2
≤ ε

2
+
ε

2
= ε (33)

which completes the proof.
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