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Origin of the Usefulness of the Natural-Time Representation of Complex Time Series
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The concept of natural time turned out to be useful in revealing dynamical features behind complex
time series including electrocardiograms, ionic current fluctuations of membrane channels, seismic
electric signals, and seismic event correlation. However, the origin of this empirical usefulness is yet
to be clarified. Here, it is shown that this time domain is in fact optimal for enhancing the signals in time-
frequency space by employing the Wigner function and measuring its localization property.
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Characterization of complex time series fx�t�g and pre-
diction of catastrophic events have always been of general
common interest in biology, earth science, and physics
(e.g., [1–5]). In the analysis of such time series, the role
of time itself and the possibility of introducing its repar-
ametrization is very important. The concept of time repar-
ametrization is, of course, not novel in the theory of
stochastic processes and applications, e.g., [6–11]. In gen-
eral [11], let fx�t�g be a stochastic process, and ��t� an
increasing function of t. The process X�t� � x���t�� is
called a compound process. The index t denotes the clock
(conventional) time, and ��t� is called trading time or time
deformation process. A special form of compound process
is subordination (e.g., [8]), as developed by Bochner [6],
and applied to financial markets by Mandelbrot and Taylor
[7] and later refined by Clark [9] to explain the speculative
prices. Note that the range of values of the new process
fX�t�g is a subset of the range of values of fx�t�g.

In recent works [12–19], it has been shown that novel
dynamical features hidden behind the time series can
emerge if we (abandon fx�t�g or fX�t�g and) represent the
time series in terms of the ‘‘natural time’’. Natural time,
labeled [20] �, is defined [12,13] by ascribing to the kth
pulse (once the initial pulse is identified) the value �k �
k=N, where N is the total number of pulses considered, and
then representing [see Fig. 1(b)] each pulse by the energy
emitted in that pulse, which for dichotomous signals are
proportional to its duration Qk. This way, the whole com-
plex time series fx�t�g is transformed to the pairs ��k;Qk�;
see Figs. 1(a) and 1(b). The usefulness of this representa-
tion in time series analysis, has already been demonstrated
when distinguishing similar looking signals that are emit-
ted from systems of different dynamics. Examples are the
discrimination of sudden cardiac death individuals from
healthy humans through analysis of their electrocardio-
grams [16,19], or of seismic electric signals (SES) activ-
ities (i.e., a series of electrical pulses detected before
earthquakes [21–23]) from irrelevant background noise
[14,15]. Another application of natural time refers to the
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manifestation of aging and scaling properties in seismic
event correlation [17,18]. We emphasize that these results
could not be obtained if the analyses were carried out in the
conventional time domain. The most important point re-
garding natural time may be that it enables us to follow the
dynamical evolution of a system and identify when it
enters into a critical stage. Therefore, it can play a major
role in predicting impending catastrophic events such as a
strong earthquake occurrence [23] and sudden cardiac
death [16,19,24]. However, the question remains to be
solved why natural time exhibits more advantages than
conventional time.

In this Letter, we address ourselves to the problem of
optimality of the natural-time representation of time series
resulting from complex systems that may contain cata-
strophic events. For this purpose, first we study the struc-
tures of the time-frequency representations [25] of the
signals by employing the Wigner function [26] to compare
the natural-time representation with the ones, either in
conventional time or other possible reparametrizations.
We shall see that significant enhancement of the signal is
observed in the time-frequency space if natural time is
used, in marked contrast to other time domains. To quan-
tify this localization property, we examine the generalized
entropic measure proposed by Tsallis [27], which has been
widely discussed in the studies of complex dynamical
systems. In time series analysis, it is desired to reduce
uncertainty and extract signal information as much as
possible. Consequently, the most useful time domain
should maximize the information measure, and hence
minimize the entropy. We find that this can statistically
be ascertained in natural time, by investigating a multitude
of different time domains.

Consider a signal fx�t�g represented in conventional
time, t. The normalized time-frequency Wigner function
associated with it is defined by

W�t; !� � A
Z

d�e	i!�x�t	 �=2�x�t
 �=2�; (1)
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where A � ��
R
dtx2�t��	1 is the normalization constant

and ! is the frequency. Numerically, it is necessary to
discretize and make finite both time and frequency, and
the integral has to be replaced by a sum. To make a
comparison of the natural-time analysis with Eq. (1), it is
convenient to rescale �k by N�k, which is precisely the
pulse number, k � tk. The quantity Qk has a clear meaning
for dichotomous time series (Fig. 1), whereas for non-
dichotomous time series, the threshold should be appropri-
ately put (e.g., the mean value plus half of the standard
deviation) to transform it to a dichotomous one. The nor-
malized Wigner function associated with Qk is now given
as follows:

W�k; ~!� � B
XN	1

i�0

Qk	iQk
i cos� ~!�tk
i 	 tk	i��; (2)

where B � ��
PN

k�1 Q
2
k�

	1 stands for the normalization
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FIG. 1. An example of observed time series of SES activity
represented in (a) conventional time, (b) natural time, and (c) a
randomly generated time. In (b), the natural time serves as an
index of the occurrence of each pulse (reduced by the total
number of pulses), while the amplitude is proportional to the
duration of each electric pulse [12–15].
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constant and ~! is the dimensionless ‘‘frequency’’ (see
the later comment). In the sum, Qk with k � 0 and k >
N should be set equal to zero. It is noted that Eq. (2) is a
discrete version of the continuous Wigner function in
Eq. (1) and unlike the ordinary definition, the transforma-
tion in Eq. (2) is not orthogonal, in general.

In Fig. 2, we present the plots of the Wigner functions in
the time-frequency spaces with conventional time and
natural time. Remarkably, significant enhancement of the
signal is observed in the latter case, with the scale of
enhancement being about 10 times. In contrast to a mod-
erate profile in the conventional time representation, a
localized structure emerges in natural time.

In the natural-time domain, the time difference between
two consecutive pulses (i.e., interoccurrence time) is
equally spaced and dimensionless, and is here taken to be
unity: tk
1 	 tk � 1. However, for comparison, later we
will consider various time domains, in which the occur-
FIG. 2. The plots of the Wigner functions of the SES activity A
in Fig. 3 given below in (a) the conventional time domain and
(b) the natural-time domain. Significant enhancement of the
signal is recognized in the natural-time domain at both edges
but mainly in the localized structures in the intermediate region.
Note that, instead of �k, N�k � k is used (see the text). ! has
the unit [rad= sec], whereas ~! has [rad].
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FIG. 3. Excerpts of 4 SES activities, labeled K1, K2, A, U; and
6 artificial noises, labeled n1-n6, in arbitrary scales.
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rence time tk � Nuk in Eq. (2) is made random. The
conventional time representation is characterized by a
constant time increment �t (e.g., 1 sec), and the occur-
rence of the ith event is at ti � i�t. Differences between
the three time domains are shown in Fig. 1. To generate the
random time domains artificially, we randomize uk by
making use of the uniform distribution defined in the
17060
interval (0,1) so that the average interoccurrence time is
again unity. Performing Monte Carlo simulation, we have
constructed more than 1000 different time domains and
integrated over ! ( ~!) from 0 to � [rad= sec] ([rad]), which
can cover the regimes of interest [recall that when tk � k,
W�k;!
 �� � W�k;!�].

To quantify the degrees of disorder in the time-
frequency spaces with various time domains, we employ,
as mentioned, the Tsallis entropy [27] defined by

Sq �
1

1	 q

�Z
d�Wq 	 1

�
; (3)

where
R
d� is the collective notation for integral and

sum over the time-frequency space and q is the positive
entropic index. In the limit q ! 1, this quantity tends to the
form of the Boltzmann-Gibbs-Shannon entropy S �
	
R
d�W lnW. This limit cannot however be taken, since

the Wigner function is a pseudodistribution and takes
negative values, in general. Sq is, however, well defined
if q is even. Thus, we propose to use the value

q � 2; (4)

which, using Eqs. (2) and (3) , results in
S2 � 1	
1

2�
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TABLE I. The number of N pulses and the values of p�S2 <
Snat2 � for the 10 electric signals analyzed. The estimation error is
at the most 1.6%.

Signal N p�S2 < Snat2 ��%�

K1 312 3.7
K2 141 6.9
A 43 28.5
U 80 8.1

n6 42 26.0
n5 432 2.8
n4 396 1.6
n3 259 2.7
n2 1080 <0:1
n1 216 5.7
To examine how the natural-time representation is supe-
rior to other ones, we have made a comparison of the values
of S2 for 10 different time series [15] of electric signals
(see Fig. 3): 4 SES activities and 6 ‘‘artificial’’ noises (i.e.,
noises emitted from nearby electrical sources). The results
are shown in Table I in which we give the values of p�S2 <
Snat2 �, i.e., the probability that S2 calculated with a time
domain different than the natural-time domain is smaller
than the value Snat2 calculated with natural time. This
probability p�S2 < Snat2 � was estimated as follows: For
each time domain produced by Monte Carlo simulations,
the corresponding S2 value was calculated through Eq. (5)
and compared to Snat2 . An inspection of Table I shows that
among the signals investigated only two, i.e., A and n6,
have a considerable probability p�S2 < Snat2 �, i.e., � 28:5%
and 26%, respectively. This can be attributed to the small
number of pulses (N � 40) of these signals for the follow-
ing reason: In Fig. 4 we present the dependence of p�S2 <
Snat2 � versus the number of pulses for the simplified ex-
ample of all Qk � 1; this figure shows that p�S2 < Snat2 �
decreases upon increasing N, starting from � 36% at N �
50. In other words, Table I reveals that, for signals with a
reasonable number of pulses, e.g., larger than 2 102, the
quantity Snat2 , in fact, tends to be minimum compared to
those of other representations attempted. In addition, it is
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FIG. 4. The values of p�S2 < Snat2 � versus the number of pulses
for the simple example of a time series consisting of pulses with
all Qk � 1.
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mentioned that Snat2 is also appreciably smaller than S2 in
conventional time (see Fig. 2).

In conclusion, we have studied if natural time yields an
optimal representation for enhancing the signals in the
time-frequency space by employing the Wigner function
and measuring its localization property by means of the
Tsallis entropy. For this purpose, we have compared the
values of the entropy for various observed time series
represented in a multitude of different time domains. We
have found that the entropy is highly likely to be minimum
for natural time, implying the least uncertainty in the time-
frequency space. This explains why dynamical evolu-
tions of diverse systems can be better described in the
natural-time domain, in particular, when systems approach
to a critical state. Important examples of the latter are:
in cardiology (e.g., an impending sudden cardiac death),
seismology (e.g., when a strong earthquake is approached),
etc.
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