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Flux avalanches in YBa,Cu3;0,_, films and rice piles: Natural time domain analysis
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The measurements of the penetration of magnetic flux into a thin film of YBa,Cu3;0,_, in the form of bursts
or avalanches as well as those of avalanches associated with the growth of a rice pile in three dimensions are
analyzed in the natural time domain y. These two systems lead to values of the variance x;={x*)—{x)> and
entropy S={x In x)—{x)In{x) which are comparable with those obtained earlier from data analysis of other
critical systems. The natural time domain analysis of a recent generalized stochastic self-organized criticality
(SOC) model [A. Carbone and H.E. Stanley, Physica A 340, 544 (2004)] as well as of a simple deterministic
SOC numerical model [M. de Sousa Veira, Phys. Rev. E 61, R6056 (2000)] is also presented and the results are
compared to those of the experimental data. Both systems—i.e., YBa,Cu30;_, and rice pile—lead to param-
eters «; and S which distinctly differ from those deduced from a similar analysis of random telegraph signals
observed in metal-oxide-semiconductor transistors with tunneling oxides.
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I. INTRODUCTION

Self-organized criticality (SOC), which is a theory for
large interactive systems, has been proposed'-? to explain the
ubiquitous occurrence of power-law behavior in nature. It
states that, when large disparity exists between the time
scales associated with the system driving and response, such
systems will evolve naturally toward a critical state so that a
minor event can lead to a major one (or catastrophe) through
an avalanche process.!?> The archetypal example of SOC is
the growing of a sand pile. Furthermore, the critical state in
superconductors has been proposed (e.g., see Ref. 3) to be a
SOC system. The strong analogy between these two
systems—i.e., sand piles and superconductors—as first
pointed out by de Gennes (see p. 83 of Ref. 4), could be in
principle understood as follows: When a type-1I supercon-
ductor is put in a slowly ramped external field, magnetic
vortices start to penetrate the sample from its edges. These
vortices get pinned by crystallographic defects (e.g., disloca-
tions), leading to the buildup of a flux gradient which is only
marginally stable in a similar fashion as is the slope in a
slowly growing sand pile. Hence, it can happen that small
changes in the applied field can result in large rearrange-
ments of flux in the sample, known as flux avalanches.>’

Here in order to further investigate whether the aforemen-
tioned flux avalanches bear characteristics similar to those
observed in SOC, we analyze the most recent experimental
data in a new time domain (see below), termed natural time
x.513 In particular, we analyze here the flux avalanches
measured'* in a thin film of YBa,Cu;0,_, (Sec. II) as well as
the avalanches observed!® during the evolution of a three-
dimensional pile of rice (Sec. III). Beyond the analysis of
these two experimental data sets, we also analyze, in the
natural time domain, the numerical results of a recent gener-
alized stochastic SOC model'¢ as well as a simple determin-
istic SOC model'”'® and compare their results to those de-
duced from the two experimental data sets, respectively.

In a time series comprised of N events, the natural time
Xi=k/N serves as an index®® for the occurrence of the kth
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event. For the analysis, we consider the evolution (x;,0y),
where Q, stands for a quantity proportional to the energy®!?
of the kth event. We then define®® the continuous function
F(w), which should not be confused with the discrete Fourier
transform, as follows:

Y k
Fw) =g Ok exp(z‘wl—v), (1)

where w=2m¢ and ¢ stands for the natural frequency. Di-
viding by F(0), we normalize F(w) and obtain its power
spectrum

N k 2
M(w)= | > ps eXp<iwﬁ> , (2)
k=1

where pk:Qk/ELlQn. For natural frequencies ¢ less than
0.5, II(w) or I1(¢) reduces to a characteristic function of the
probability distribution p, in the context of probability
theory. As w—0, a Taylor expansion of Eq. (2) leads®!° to
[I(w)=1- kK w?+- -+ where

k1= () - (0 (3)
and (x")==)_,pixi- It has been argued® that for critical
systems like seismic electric signals (SES’s), (a) the variance
of x is theoretically expected to be «;=7/100 and experi-
mentally found® to be 0.070(5) and (b) the entropy S in the

natural time domain (which is a dynamic'>?° and not simply
statistical entropy), defined as®!!

S=(xIny)-{in(x), 4)

where (xIn x)==) pixcIn xi, is smaller than the value
S,=In2/2-1/4=0.0966 of a “uniform” (u) distribution. In
the latter case the «; value is k;=k,=1/12.

The paper is organized as follows: In Secs. II and III, we
find that the data analysis in the natural time of the afore-
mentioned two experimental data sets as well as the two
numerical SOC models lead to «; and S values comparable
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with those expected from a critical behavior. This distinctly
differs from the results obtained in Sec. IV when analyzing
random telegraph signals (RTS’s) observed’! in metal-oxide-
semiconductor (MOS) transistors. This difference is dis-
cussed in Sec. IV, where we also present the interrelation
between the statistical properties of SOC and the functions
k; and S. The main conclusions are summarized in Sec. V.

II. NATURAL TIME ANALYSIS OF FLUX AVALANCHES
IN YBa,Cu;0,_, FILMS

First, we start with the observation of the penetration of
magnetic flux into a thin film of YBa,Cu;0,_, by Aegerter
et al.'* They studied the local changes in the magnetic flux
over the whole central area of a sample via a highly sensitive
magneto-optic setup, which allows that flux changes corre-
sponding to 2.5, can be resolved where ®y=h/2e is the
magnetic flux quantum (the flux of a single vortex). The
pinning sites in the sample were uniformly distributed and
consisted mostly of screw dislocations acting as point pins.
For curpates such as YBa,Cu;05_, the coherence lengths are
on the order of tens of A, and thus atomic-scale structural
inhomogeneities such as point defects and columnar defects
can play an important role in flux-line pinning. (In these
superconductors, Su et al.?? recently found that the Schottky-
defect formation energy increases almost linearly with B(),
where B is the isothermal bulk modulus and () the mean
volume per atom, in striking agreement with an early model
suggested’>?* by one of the present authors.) The data of
Aegerter et al.'* we analyze here, coming from experimental
runs consisting of 140 time steps. The size and shape of the
avalanches were determined from the difference AB.(x,y) of
two consecutive images (50 uT increase between images),
where B.(x,y) denotes the flux density at the surface of the
sample measured. From these differences, the average in-
crease in the applied magnetic field due to the stepwise field
sweep was subtracted in order to solely study the avalanches.
Once the incremental field difference is determined, the size
of an avalanche, corresponding to the displaced amount of
flux A®, is estimated from AB, by integrating over the
whole area ACD:% JAB_(x,y)dxdy. The time series of the
avalanche behavior of a typical experiment of Aegerter
et al.'* is depicted in Fig. 1(a), which shows that the evolu-
tion of the magnetic flux inside the sample is intermittent
with occasional large jumps. In Fig. 1(b) we show the results
obtained when the data of Fig. 1(a) are analyzed in natural
time domain by assuming Q,=A®,. An inspection of the
latter figure shows that for N=140 the «; value is close to
0.070(5) and the S value is smaller than S,. These results are
compatible to those earlier deduced for the critical
behavior®~!! of SES’s.

We now turn to the recently suggested'® model on the
directed self-organized critical patterns emerging from
fractional Brownian paths. This model is considered!® to
be a generalized stochastic model, including the
Dhar-Ramaswamy?> model and the stochastic models as par-
ticular cases. In short, Carbone and Stanley“’ consider a
generalized Brownian walk y(i) defined by y(i)EE’:lng,
where the steps &, are taken from a discrete Gaussian
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FIG. 1. (a) The time evolution of the magnetic flux in
YBa,Cu305_, inside the sample over the first run of Fig. 2 of Ref.
14. (b) The results of the variance «; (dotted line) and the entropy S
(solid line) as they evolve event by event, when the data of (a) are
analyzed in the natural time domain.

process with mean (&,)=0 and variance <§,§)=0. The mean-
square displacement of y(i) scales with Ai as (y(i)?)
o« (Ai)*, where H is the Hurst exponent (0<<H<1). The
moving average function y,(i) is

n-1

5ui) = -3 y(i— ), (5)
L=

which is a linear operator whose output is still a generalized
Brownian motion, but now with the high-frequency compo-
nents of the signals averaged out according to the window
amplitude 7.2% In order to characterize the clusters C corre-
sponding to the regions bounded by y(i) and ¥,(i) in term of
the characteristic exponents of SOC systems, they define—
for each cluster—the cluster area s;:
i.(j+1)
si= 2 @) -F,0)Ai, (6)
i=i,(j)
where the index j refers to each cluster. The symbols i.(j)
and i (j+1) stand'® for the values of the index i correspond-
ing to two subsequent intersections of the “lines” defined by
¥,(i) and y(i), and A is the elementary time interval corre-
sponding to each step of the random walker. Then, the prob-
ability density function (PDF) P(s) scales'® as P(s) o s~7 with
7=2/(1+H). The exponent of the avalanche distribution re-
ported from the data analysis'* is around 7=1.3, which cor-
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FIG. 2. The PDF P(s) versus the cluster area s of the C clusters
of Ref. 16, for H=0.5 for various values of n=50, 100, 200, 600,
1000, and 2000. The line P(s)ocs™™ with 7=4/3, as analytically
found in Ref. 16 to describe P(s), is also drawn as a guide to the
eye.

responds to H~0.5. In Fig. 2, we plot P(s) versus s calcu-
lated for various n values for H=0.5. Taking into account
that the maximum avalanche size s,,,, detected by Aegerter
et al.'* is of the order of 10%, an inspection of Fig. 2 leads to
n=200. In Fig. 3, we plot with solid lines the PDF’s of «;
and S that have been obtained from the model of Ref. 16 for
H=0.5, n=200, and N=140. The maxima of these two
curves lie around «;=0.07(1) and S=0.08(1), respectively,
which are compatible with the corresponding «; and S values
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FIG. 3. The PDF’s of k; and S obtained from a Monte Carlo
simulation for the generalized stochastic model of Ref. 16 for
H=0.5, n=200, and N=140. The dotted and dashed PDF’s corre-
spond to two different noncritical cases (see the text).
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depicted in Fig. 1(b) (for N=140). For the sake of compari-
son, in Fig. 3, we also plot the corresponding PDF’s for
two noncritical cases associated with a uniform
distribution'>—i.e., (i) when Q, are uniformly distributed in
the range (0,1) (dotted line) and (ii) when Q, are exponen-
tially distributed (dashed line) which corresponds to a di-
chotomous Markovian process (see Ref. 11). The maxima of
the latter two cases lie at k; =k, and S= S, which markedly
differ from those deduced for YBa,Cu;0,_, in Fig. 1(b) (for
N=140).

III. NATURAL TIME ANALYSIS OF THE AVALANCHES
ASSOCIATED WITH THE GROWTH OF THREE-
DIMENSIONAL RICE PILES

We now proceed to the well-controlled experiment on rice
piles by Aegerter et al.'>?’ Since a genuine understanding of
the nature of SOC can be gained only when the approach to
the critical state is understood, Aegerter et al. studied the
evolution of a three-dimensional pile of rice starting well
away from the critical state and getting progressively closer.
The experimental results were found?’ to be satisfactorily
described by well-founded concepts proposed?® in the con-
text of extremal dynamics. In the latter context, Paczuski
et al.”® have derived an equation (predicting power-law be-
havior), which they call the gap equation, describing the ap-
proach of the system to the critical state. Aegerter et al.'”
directly studied a measure of this gap given by the maximal
local slope of the rice pile and hence could test various scal-
ing relations of extremal dynamics. Furthermore, Aegerter et
al. studied the evolution of avalanche sizes, as well as that of
the avalanche distributions, which can be used as further
tests of extremal dynamics aspects. Here we focus on the
way the size AV of the avalanches grow with time in the
transient regime, which was measured directly. Figure 4(a)
depicts the time evolution of AV obtained in one experiment
of Ref. 15. In Fig. 4(b), we show the results obtained when
the data of Fig. 4(a) are analyzed in the natural time domain
when assuming Q;=AV,. We see that actually at later times
(N=350) the k; value scatters in the region around 0.07(1)
and §~0.07(1)<S,, in a similar fashion as earlier found®-!!
for other critical systems.

We clarify that upon shuffling the data, we deduce that,
for N=550, Prob[x;<0.07]<2% and Prob[S=<0.07]
<0.1%, which dictate that the sequential order of the ava-
lanches captured by the natural time analysis is of prominent
importance for establishing the SOC state. This could be
understood in the context that in the shuffling procedure the
values are put into random order, and thus all correlations
(memory) are destroyed.!!2

We now investigate the numerical simulations of a simple
deterministic self-organized critical system introduced!” to
describe avalanches in stick-slip phenomena and which is
very close to the original array of connected pendulums
first discussed in Ref. 1. These detailed simulations
demonstrated'® that SOC itself can spontaneously generate
both critical avalanche statistics and long-range temporal
correlations between avalanches in the presence of a tempo-
rarily uniform, slow external drive, thus concluding that
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FIG. 4. (a) The evolution of the avalanche sizes, in the transient
regime, for one of the experiments of Ref. 15. (b) The results of the
variance «; (dotted line) and the entropy S (solid line) as they
evolve event by event, when the data of (a) are analyzed in the
natural time domain.

SOC can be regarded as a possible mechanism for the pro-
duction of 1/f# noise. The model could be shortly
defined'”!® as follows: Consider a one-dimensional system
of size L, where a continuous (force) variable f,=0 is asso-
ciated with each site €. Initially all f, have the same value f
which is below a threshold f,;,; without loss of generality, one
can set f;,=1.0. The basic time step consists of varying the
force on the first site according to f,=f,+ Jf; the system
then relaxes with a conservative redistribution of the force at
sites fy=f,, (toppling sites) according to fe=P(f,—f,,) and
fes1=fes1 +Af/2, where Af is the change of force at the
overcritical site and ®(x) a periodic nonlinear function. The
relaxation continues until all sites have f, <f,, for all £. The
number of topplings, s, required for the system to relax is
considered here as the appropriate value of Q, in the natural
time domain. Then, the driving force at the first site sets in
again. This is complemented by open boundary conditions;
i.e., the force is “lost” at {=1 and €=L. The nonlinear peri-
odic function used here is, as in Refs. 17 and 18, a sawtooth
function ®(x)=1-ax+[ax], where [---] denotes the integer
part of ax and a is a number. It was shown'” that such a
system evolves to a SOC state where the avalanche distribu-
tions are scale free limited only by the overall system size. In
this state, the total force of the system after each avalanche,
X(i)==%_,fe(i), where i is the avalanche number, exhibits'® a
1/f138 power spectrum.

In Fig. 5, we present the results obtained from this model
using L=1024, a=4, f,=0.87, and §f=0.1. In Fig. 5(a) the
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FIG. 5. (a) The results of the model studied in Ref. 18 as read in
the natural time domain, L=1024, a=4, f,=0.87, and 5f=0.1. (b)
The variance k; (dotted line) and the entropy S (solid line) as they
evolve avalanche by avalanche. Note that after the transient and
hence when the system enters the critical state—i.e., in the region
N e (17 000,30 000)—we have k;=0.07 and S<S, (see also the
relevant discussion in Sec. IV). (c) The total force of the system
after each avalanche [we draw attention that after N=17 000 the
SOC state is reached; see also (d)]. (d) The power spectrum of (c)
for N=17 000 exhibiting the 1/f!-3 behavior as proposed in Ref.
18 for the SOC state.
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FIG. 6. (a), (b) The same as in Fig. 4, but for the avalanches
calculated by the model studied in Ref. 18 using f,=0.5, 6f=0.1,
and a=4.

number of topplings s is plotted versus avalanche number i
(i=N) for the first 170 000 avalanches which shows how
this series of avalanches can be read in natural time. In Fig.
5(b), k; and S for Fig. 5(a) are shown. In Fig. 5(c), we plot
the total force X(i) versus N and finally in Fig. 5(d) its power
spectrum for N=17 000—i.e., after the establishment of the
SOC state [see Fig. 5(c)]. An inspection of Figs. 5(b) and
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5(c) reveals that (after the transient and hence) when the
system enters into the critical state—i.e., in the range
N=17 000 to =30 000—we have that (i) the «; value be-

FIG. 8. (Color online) Monte
Carlo simulation results for the
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average values and the standard
deviations of «; and S obtained
from the model studied in Ref. 18
for a=4, f, e (0.25,0.75), and of
€ (0,0.2). The corresponding re-
sults for a dichotomous Markov-
ian process are also shown with
the thick red lines.
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FIG. 9. (a) Example of a time record (F,=50 Hz) of source
currents from Ref. 21. (b) How the signal in (a) is read in natural
time. (c) The results of the variance «; (dotted line) and the entropy
S (solid line) as they evolve event by event, when the data of (a) are
analyzed in the natural time domain.

comes approximately equal to 0.070(5) and (ii) the S value is
well below that of the “uniform” distribution (S, =0.0966),
scattering approximately within the range S$=0.065 and
0.075. This has been verified for a wide range of parameters
L, fo, Of, and a, just before the SOC state is reached. For
example, in Fig. 6 we plot for N values comparable to the
experimental ones [recall that in Fig. 4(b) N is up to 550] the
results of the same model in the transient stage for f;,=0.5,
8f=0.1, and a=4; we then see again in Fig. 6(b) that, for
N>350, k; and S scatter around 0.07.

IV. DISCUSSION

We first focus on a possible interrelation between the
functions «; and S and the statistical properties of SOC
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and in particular the exponent 7. Recalling that at
SOC P(s)«s™", a cumulative distribution function F(s)
=(l—s1‘T)/(1—s,1n;;), for 7,s>1 can describe power-law-
distributed avalanches up to a maximum size s,,,,. For data
randomly drawn from such a distribution,?® we plot in Fig. 7,
for N=140, the average values (k) and (S) versus 7 assum-
ing Q;=s for various s,,,, values. In other words, this figure
provides for various system sizes (and hence various s,,,,)
the interrelation between the functions «; and S and the ex-
ponent 7. In the case of YBa,Cu;0,_, the experimental data
have s,,,,~ 10* and 7=1.3, which according to Fig. 7 corre-
spond to (x;)=0.076(1) and (S)=0.088(1). These values do
not greatly differ from the values of «; and S obtained from
the analysis of the data in Fig. 1(b) (for N=140).

We now proceed to a system that approaches SOC as the
case of rice piles in which we have seen [Fig. 5(b)] that
and S remain around 0.07 for N>350. Figure 8 presents the
results of a Monte Carlo simulation of the simple determin-
istic model of Ref. 18 for various system sizes L=38, 16, 32,
64, 128, 256, 512, 1024, and 2048 for the first 10* ava-
lanches for a=4, f, € (0.25,0.75) and 6f € (0,0.2). An in-
spection of this figure shows that for small system sizes—
e.g., L=8,16—the values of («;) and (S) rapidly converge to
those of a uniform distribution—i.e., x, and S, respectively.
On the other hand, for large system sizes—e.g., L= 128—the
values of both k; and S, after a transient (N =<300), stabilize
around 0.07 even for N~ 10* in agreement with the afore-
mentioned behavior of the experimental data [see Fig. 4(b)
for N>350]. For intermediate sizes—e.g., L=32,64—the
functions (x;) and (S) initially stabilize at values =0.07 and
later continuously increase towards «, and S, respectively.

Since the above systems analyzed are all critical systems,
we now proceed for the sake of comparison to the analysis in
the natural time domain of a system that exhibits substan-
tially different behavior. We consider a case that belongs to
the general case of RTS’s, which, for example, have been
studied in a number of different semiconductor structures,
most of all in the drain current of MOS transistors and
in the gate current of MOS diodes biased in accumulation
(see Ref. 30 and references therein). Here, we focus on the
specific example on RTS’s measured in the low-voltage
(-1.40<V;<-0.88 V) edge direct tunneling currents in
ultrathin-gate-stack (10 A oxide+10 A nitride) n-channel
MOS field-effect transistors studied in Ref. 21. In this ex-
periment, the abrupt transitions between two distinct states
(i.e., the RTS phenomenon) occur in gate and source currents
whereas being absent in the drain current (see Fig. 2 of
Ref. 21). An example of such an RTS signal is depicted in
Fig. 9(a) while in Fig. 9(b) we show how the signal in (a) is
read in natural time.®° The calculated values of «; and S are
shown in Fig. 9(c) where it can be seen that, at N=20,
k;=1/12 and S=S,, thus indicating a random behavior in
time. (Due to the small number of events, N= 20, the results
have a statistical uncertainty larger than those in the previous
examples. The confidence intervals for the «; and S statistics
in this case can be found in Fig. 1 of Ref. 31.) This substan-
tially differs from the behavior found in the SOC systems
studied above. This can be seen in Fig. 8 in which we also
include (thick red lines) the results of «; and S calculated for
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a dichotomous Markovian process. These show a very rapid
convergence to k;=k, and S=S,.

V. CONCLUSIONS

The data of the avalanches of the penetration of magnetic
flux into a thin film of YBa,Cu;0,_, as well as those of a
three-dimensional pile of rice getting progressively closer to
the critical state when analyzed on the basis of natural time
lead to values of the variance «; and the entropy S which
distinctly differ from those obtained from the analysis of
RTS’s observed in MOS transistors with tunneling oxides.
The latter result in values of «; and S that indicate random
behavior in time, while the former (i.e., YBa,Cu;0,_, and

PHYSICAL REVIEW B 73, 054504 (2006)

rice pile) are compatible with those calculated for SOC nu-
merical models. A quantitative discussion of the relation be-
tween the functions «; and S and the SOC statistical proper-
ties is put forward. Both the rice pile data and the
deteministic SOC model indicate that, when approaching
SOC, k; becomes around 0.07(1) which has been earlier
found’ for other critical systems.
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