
Attempt to distinguish long-range temporal correlations from the statistics of the increments
by natural time analysis

P. A. Varotsos,1,2,* N. V. Sarlis,1 E. S. Skordas,2 H. K. Tanaka,3 and M. S. Lazaridou1

1Solid State Section, Physics Department, University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece
2Solid Earth Physics Institute, Physics Department, University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece

3Earthquake Prediction Research Center, Tokai University 3-20-1, Shimizu-Orido, Shizuoka 424-8610, Japan
�Received 25 February 2006; revised manuscript received 30 June 2006; published 23 August 2006�

Self-similarity may originate from two origins: i.e., the process memory and the process’ increments “infi-
nite” variance. A distinction is attempted by employing the natural time �. Concerning the first origin, we
analyze recent data on seismic electric signals, which support the view that they exhibit infinitely ranged
temporal correlations. Concerning the second, slowly driven systems that emit bursts of various energies E
obeying the power-law distribution—i.e., P�E��E−�—are studied. An interrelation between the exponent �
and the variance �1����2�− ���2� is obtained for the shuffled �randomized� data. For real earthquake data, the
most probable value of �1 of the shuffled data is found to be approximately equal to that of the original data,
the difference most likely arising from temporal correlation. Finally, it is found that the differential entropy
associated with the probability P��1� maximizes for � around ��1.6–1.7, which is comparable to the value
determined experimentally in diverse phenomena: e.g., solar flares, icequakes, dislocation glide in stressed
single crystals of ice, etc. It also agrees with the b value in the Gutenberg-Richter law of earthquakes. In
addition, the case of multiplicative cascades is studied in the natural time domain.
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I. INTRODUCTION

A large variety of natural systems exhibit irregular and
complex behavior which at first looks erratic, but in fact
possesses scale-invariant structure �e.g., �1,2	�. A process

X�t��t�0 is called self-similar �3	 if, for some H�0,

X��t� = �HX�t� " � � 0, �1�

where the symbol of equality refers here to all finite-
dimensional distributions of the process on the left and right,
and the parameter H is called the self-similarity index or
exponent. Equation �1� means a “scale invariance” of the
finite-dimensional distributions of X�t�, which does not im-
ply, in stochastic processes, the same for the sample paths
�e.g., �4	�. Examples of self-similar processes are Brownian,
fractional Brownian �fBm�, and Lévy stable and fractional
Lévy stable motion �fLsm�. Lévy stable distributions �which
are followed by many natural processes—e.g., �5,6	� differ
greatly from the Gaussian ones because they have heavy tails
and their variance is infinite �e.g., �4,7	�.

An important point in analyzing data from natural systems
that exhibit scale-invariant structure is the following: In sev-
eral systems this nontrivial structure points to long-range
temporal correlations; in other words, the self-similarity re-
sults from the process’ memory only �e.g., the case of fBm�.
Alternatively, the self-similarity may solely result from the
process’ increments infinite variance: e.g., Lévy stable mo-
tion. �Note that in distributions that are applicable to a large
variety of problems, extreme events have to be truncated for
physical reasons—e.g., finite size effects—when there is no
infinity �8	, and this is why we write hereafter “infinite.”� In
general, however, the self-similarity may result from both

these origins �e.g., fLsm�. It is the main aim of this paper to
discuss how a distinction of the two origins of self-similarity
�i.e., process’ memory, process’ increments “infinite” vari-
ance� can be in principle achieved by employing the natural
time analysis.

Before proceeding, the following clarifications are neces-
sary as far as the aforementioned two sources of self-
similarity are concerned. Long-range temporal correlations,
which are quoted above as a first origin of self-similarity, are
an immediate consequence of Eq. �1� with H�

1
2 defining a

self-similar process. We stress, however, that long-range cor-
relations do not automatically imply self-similarity of a pro-
cess. Multifractal processes provide a large class of counter-
examples. Here, for example, we discuss the natural time
analysis of multiplicative cascades in Sec. IV. The second
origin of self-similarity comes from the statistical properties
of the increments of the process. We emphasize, however,
that the statistics of these increments does not automatically
lead to nontrivial self-similarity of the process. Specifically, a
process which is invariant under shuffling of the increments
has independent increments and is characterized by the self-
similarity index 1

2 .
In a time series comprising N events, the natural time

�k=k /N serves as an index �9,10	 for the occurrence of the
kth event. The evolution of the pair ��k, Qk� is considered
�9–19	, where Qk denotes in general a quantity proportional
to the energy released in the kth event. For example, for
dichotomous signals Qk stands for the duration of the kth
pulse while for the seismicity Qk is proportional to the seis-
mic energy released during the kth earthquake �9,17,19	
�which is proportional to the seismic moment M0�. The nor-
malized power spectrum ��	���
�	��2 was introduced
�9,10	, where*Electronic address: pvaro@otenet.gr
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�	� = 
k=1

N

pkexp�i	
k

N
� �2�

and pk=Qk /n=1
N Qn, 	=2��; � stands for the natural fre-

quency. When the system enters the critical stage, the fol-
lowing relation holds �9,10	:

��	� =
18

5	2 −
6cos 	

5	2 −
12sin 	

5	3 . �3�

For 	→0, Eq. �3� leads to �9,10,16	 ��	��1−0.07	2

which reflects �17	 the fact that the variance of � is given by
�1= ��2�− ���2=0.07, where �f����=k=1

N pkf��k�. It has been
argued �17	 that in the case of earthquakes, ���� for �→0
can be considered as an order parameter and the correspond-
ing probability density distribution function �PDF� is desig-
nated by P�����	. Since, at �→0, �1 is linearly related to
���� �because Eq. �2� leads to ����=1−4�2�2�1 for �
→0	, one can study, instead of P�����	, the PDF of �1: i.e.,
P��1�. This will be used here. The entropy S in the natural
time domain is defined as �9,12	 S��� ln ��− ���ln���,
which depends on the sequential order of events �13,14	, and
for infinitely ranged temporal correlations its value is smaller
�12,16	 than the value Su�=�ln 2� /2−1/4�0.0966	 of a “uni-
form” distribution �defined in Refs. �9,11–14	—e.g., when
all pk are equal�: i.e., SSu. The value of the entropy ob-
tained �15	 upon considering the time reversal T—i.e., Tpk
= pN−k+1—is labeled by S−.

The paper is organized as follows: In Sec. II, we treat the
case when solely long-range temporal correlations exist. Sec-
tion III deals with the self-similarity resulting from the pro-
cess’ increments infinite variance by restricting ourselves to
slowly driven systems that emit energy bursts obeying
power-law distributions. The analysis in the natural time do-
main of multiplicative cascades is treated in Sec. IV. A brief
discussion follows in Sec. V, while Sec. VI presents the main
conclusion. Three appendixes clarify some points discussed
in the main text.

II. CASE OF TEMPORAL CORRELATIONS

We consider here the case of seismic electric signal �SES�
activities �critical dynamics� which exhibit infinitely ranged
temporal correlations �10–12	 and present below two recent
examples.

As a first example, Fig. 1�a� shows a recent SES activity
recorded at a station located in central Greece �close to
Patras city, PAT� on 13 February 2006. It comprises 37
pulses, the durations Qk of which vary between 1 s and 40 s
�see Fig. 1�b�	. The natural time representation of this SES
activity can be seen in Fig. 1�b�, and the computation of �1,
S, and S− leads to the following values: �1=0.072±0.002,
S=0.080±0.002, and S−=0.078±0.002. These values obey
the conditions �1�0.070 and S ,S−Su, which have already
been found �10,12,18	 to be obeyed for other SES activities
�this classification of the signal in Fig. 1�a� as SES activity
was strikingly confirmed after the submission of the present
paper; see Appendix A and Ref. �20		. If we repeat the com-
putation for surrogate data obtained by shuffling the dura-

tions Qk randomly �and hence their distribution is con-
served�, the corresponding quantities, designated by adding a
subscript “shuf,” have the following values: �1,shuf =0.082
and Sshuf �=S−,shuf�=0.091 with standard deviations 0.008
and 0.011, respectively. They are almost equal to the corre-
sponding values of a “uniform” distribution: i.e., �u=1/12
�0.0833 and Su=0.0966.

As a second example, Fig. 2�a� shows a more recent SES
activity recorded again at PAT on 13 April 2006 �this will be
hereafter called PAT2; see also Ref. �20	�. It comprises 11
pulses only, the durations Qk of which lead to the natural
time representation depicted in Fig. 2�b� �other examples of
SES activities that were recorded on 19 and 21 April 2006
are given in Ref. �20	�. For the sake of the reader’s conve-
nience, the dichotomous representation of the signal is also
marked in Fig. 2�a�. The computation of �1, S, and S− leads
to the following values: �1=0.075±0.002, S=0.074±0.002,
and S−=0.078±0.002 which more or less obey the aforemen-
tioned conditions already found for other SES activities. Af-
ter shuffling the durations Qk randomly, we find �1,shuf
=0.082 and Sshuf �=S−,shuf�=0.084 with standard deviations
0.007 and 0.008, respectively. Note that, as shown in Fig. 1
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FIG. 1. �a� An SES activity recently recorded at PAT station
�sampling rate fexpt=1 Hz�. The actual electric field E is �20	
6 mV/km, but here the signal is presented in normalized units—
i.e., by subtracting the mean value and dividing by the standard
deviation. �b� How the SES activity in �a� is read in natural time.
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of Ref. �21	, the Su value of a “uniform” distribution com-
prising a very small number of pulses, as in the present case,
is markedly smaller than 0.0966, being comparable to the
value 0.084 found here if the experimental error is also taken
into account.

By applying the same procedure to other SES activities
reported earlier �15	, we find �see Table I� that actually
�1,shuf ��u and Sshuf �S−,shuf �Su. This points to the conclu-
sion that the self-similarity of SES activities result from the
process’ memory only �see also Appendix B�, which agrees
with the independent analysis of Ref. �4	.

In addition, the detrended fluctuation analysis �DFA�
�22,23	 in natural time of the SES activity depicted in Fig. 1
leads to an exponent �DFA=1.07±0.36, which agrees with
the earlier finding �DFA�1 in several other SES activities
�11	 �the SES activity of Fig. 2�a� cannot lead to a reliable
�DFA due to the very small number of pulses	. Interestingly,

the values of the quantities �1, S, S−, and �DFA are consistent
with the results deduced from a numerical simulation in fBm
time series described in Ref. �18	; the latter showed that
when �DFA�1 the corresponding values are �1�0.070 and
S�S−�0.080. Figure 3 depicts �with the red crosses� the
most probable value �1,p of �1versus �DFA resulting from
such a numerical simulation.

III. CASE OF POWER-LAW DISTRIBUTIONS

We now study a case of self-similarity resulting from the
process’ increments “infinite” variance. Here, we restrict our-
selves to slowly driven systems that emit energy bursts obey-
ing the power-law distribution

P�E� � E−�, �4�

where � is constant. In a large variety of such systems, in
diverse fields, an inspection of the recent experimental data
reveals that the � exponent lies in a narrow range: i.e., 1.5
���2.1 �and mostly even within narrower bounds: i.e., �
=1.5–1.8�. To realize the diversity of the phenomena that
exhibit the aforementioned property, we compile some in-
dicative examples in Table II, which are the following.

First, crystalline materials subjected to an external stress
display bursts of activity owing to the nucleation and motion
of dislocations. These sudden local changes produce acoustic
emission waves which reveal that a large number of disloca-
tions move cooperatively in an intermittent fashion �e.g., see
�24	 and references therein�. As a precise example, we in-
clude in Table II the results of acoustic emission experiments
on stressed single crystals of ice under viscoelastic deforma-
tion �creep�, which show that the probability distribution of
energy burst intensities obey a power-law distribution with
�=1.6 spanning many decades �see Fig. 1 of Ref. �25	�. Sec-
ond, the same exponent is found �i.e., �=1.60±0.02� �26	 in
the analysis of recent intermittent plastic flow observations
�i.e., measurements of discrete slip events for loadings above
the elastic-plastic transition� on nickel microcrystals �see
Fig. 2 of Ref. �26	�. Third, we consider the case of solar
flares that represent impulsive energy releases in the solar
corona �e.g., see Ref. �27	 and references therein; see also
Ref. �28	 in which it is concluded that earthquakes and solar
flares exhibit the same distributions of sizes, interoccurrence
times, and temporal clustering�. This energy release is ob-
served in various forms: thermal, soft and hard x-ray emis-
sions, accelerated particles, etc. The statistical analysis of
these impulsive events shows that the energy distribution ex-
hibits, over several orders of magnitude, a power law with
exponents � ranging from 1.5 to approximately 2.1 �depend-
ing on the experimental procedure and the geometrical as-
sumptions adopted in the analysis�. Other examples are
acoustic emission from microfractures before the breakup of
heterogeneous materials �wood, fiberglass�, icequakes, and
earthquakes.

Concerning the latter, the best known scaling relation is
the Gutenberg-Richter law �29	, which states that the �cumu-
lative� number of earthquakes with magnitude greater than m
occurring in a specified area and time is given by
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FIG. 2. �Color online� �a� An SES activity �solid blue line�,
PAT2, comprising 11 pulses only, which has been recorded at PAT
on 13 April 2006. It is presented here in normalized units as the
case of Fig. 1�a� �for other more recent examples see Ref. �20	�
along with the corresponding dichotomous representation �dotted
red line�. �b� How the SES activity in �a� is read in natural time.
Note that in the eighth pulse of �a�, it seems that the dichotomous
representation might overestimate Q8. If we decrease this value by
a factor of 2, the resulting �1, S, and S− become 0.076, 0.075, and
0.078, respectively, which agree within the experimental error with
the corresponding values reported in Table I.
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N ��m� � 10−bm, �5�

where b is a constant, which varies only slightly from region
to region �Eq. �5� holds both regionally and globally	, being
generally in the range 0.8�b�1.2 �see �30	 and references
therein�. Considering that the seismic energy E released dur-
ing an earthquake is related �31	 to the magnitude through
E�10cm—where c is around 1.5—Eq. �5� turns to Eq. �4�,
where �=1+b /1.5. Hence, b�1 means that the exponent �
is around �=1.6–1.7.

The following procedure is now applied: We generate �see
also Ref. �32	� a large amount of artificial data obeying Eq.

�5� for a certain � value. These randomized �“shuffled” �13	�
data are subsequently analyzed, in the natural time domain,
for each � value, with the following procedure �17	: First,
calculation of the variance �1 is made for an event taking
time windows for 6–40 consecutive events �the choice of the
precise value of the upper limit is not found decisive, be-
cause practically the same results are obtained even if the
number of consecutive events was changed from 6–40 to
6–100, as will be further discussed below�. And second, this
process was performed for all events by scanning the whole
data set. In Fig. 4, we plot the quantity P��1� versus �1 for

TABLE I. The values of �1, �1,shuf, S, S−, and Sshuf for the SES activities mentioned in Ref. �15	 as well
as the ones �PAT and PAT2� depicted in Figs. 1 and 2, respectively. The numbers in parentheses denote the
standard deviation for the distributions of �1,shuf and Sshuf in the shuffled data.

Signal �1 �1,shuf S S− Sshuf
b

K1 0.063±0.003a 0.083�0.005� 0.067±0.003a 0.074±0.003a 0.096�0.007�
K2 0.078±0.004a 0.082�0.007� 0.081±0.003a 0.103±0.003a 0.094�0.009�
A 0.068±0.004a 0.082�0.007� 0.070±0.008a 0.084±0.008a 0.092�0.010�
U 0.071±0.004a 0.082�0.009� 0.092±0.004a 0.071±0.004a 0.093�0.012�
T1 0.084±0.007a 0.082�0.007� 0.088±0.007a 0.098±0.010a 0.091�0.010�
C1 0.074±0.002a 0.082�0.008� 0.083±0.004a 0.080±0.004a 0.092�0.011�
P1 0.075±0.004a 0.082�0.008� 0.087±0.004a 0.081±0.004a 0.090�0.011�
P2 0.071±0.005a 0.082�0.009� 0.088±0.003a 0.072±0.015a 0.091�0.012�
E1 0.077±0.017a 0.083�0.008� 0.087±0.007a 0.081±0.007a 0.092�0.010�

PAT 0.072±0.002 0.082�0.008� 0.080±0.002 0.078±0.002 0.091�0.011�
PAT2 0.075±0.002 0.082�0.007� 0.074±0.002 0.078±0.002 0.084�0.008�c

aFrom Ref. �15	.
bNote that Sshuf =S−,shuf as mentioned in the text.
cThis value differs from Su because N=11; in such a case, Eq. �A11� of Ref. �13	 should be used for
comparison with the “uniform” distribution.
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following the procedure described in Appendix B of Ref. �17	. The
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TABLE II. Compilation of the experimental values of the
power-law exponent � determined in different physical processes.

Process and type
of measurement � References

Dislocation glide
in hexagonal

ice single crystals
�acoustic emission�

1.6 �25	

Intermittent plastic flow
in nickel microcrystals

1.6 �26	

Solar flares 1.5–2.1 �27,44–46	
Microfractures before
the breakup of wood
�acoustic emission�

1.51 �47,48	

Microfractures before
the breakup of fiberglass

�acoustic emission�

2.0 �47,48	

Earthquakes 1.5–1.8
�b=0.8–1.2�

See Ref. �30	 and
references therein

Icequakes �1.8 �b�1.25� See p. 212 of �49	
and references therein
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several � values. The most probable value �1,p �for �
=const� is also plotted in Fig. 3 versus the corresponding �
value �blue asterisks�. This curve interrelates �1 and � for the
shuffled data �thus an eventual process’ memory is here de-
stroyed �13	� and hence the plotted �1,p values �which differ
markedly from �u� correspond to the self-similarity resulting
from the heavy-tailed distribution only.

In order to study the origin of self-similarity in a real data
set, let us consider here the example of earthquakes. Using
the Japan catalog mentioned in Ref. �17	, we give in Fig. 5
the two curves P��1� versus �1 that result when the afore-
mentioned calculation is made by means of a window of
6–40 consecutive events sliding through either the original
catalog or a shuffled one. Comparing the resulting �1,p val-
ues �both of which markedly differ from �u�, we see that the
value of the surrogate data ��0.064� does not greatly differ
from the one ��0.066� corresponding to the original data.
This may reflect that the self-similarity mainly originates
from the process’ increments “infinite” variance �but see also
the next paragraph as well as the second paragraph of Sec.

V�. Note, however, that the �1,p value of the original data is
comparable to the value �1�0.070 that was found in infi-
nitely ranged temporal correlations. This merits further in-
vestigation, since it may indicate the importance of temporal
correlations, rather than their absence, in the earthquake cata-
logs.

The following clarifications are worthwhile to be men-
tioned. First, various aspects related to the origin of earth-
quake scale invariance that have been forwarded by other
authors are summarized in the first sections of Refs. �17,18	.
Second, when plotting �P�X� vs �X− �X�� /�, where X stands
for ���� for ��0 and � its standard deviation, the follow-
ing has been found �17	: for b values larger than 1 and
smaller than 1.4, the curves of the surrogate data �produced
on the basis of the Gutenberg-Richter law—i.e., Eq. �5�	
have a general feature more or less similar to the curve of the
real seismicity data. However, none of these b values in the
surrogate data can lead to a curve coinciding to the one ob-
tained from the real data. In other words, the scaled distribu-
tion reveals an extra complexity for the real seismic data
when compared to the surrogate data, even if the latter are
produced with b values comparable to the experimental ones.
Third, let us now show that the method suggested in this
paper does reveal �increased� temporal correlations in the
well-known case of earthquake aftershocks. In this case the
�modified form of� Omori law holds �e.g., Ref. �33	; see also
Ref. �34	 and references therein�, which states that the num-
ber of aftershocks, dN�t�, occurring in the short time interval
between t and t+dt, where t stands for �conventional� time
elapsed after the main shock, obeys the relation

dN�t�
dt

=
B

�1 + t/��c , �6�

where � and B are positive constants and the exponent c is
usually in the range 0.8–1.5. Using the Southern California
earthquake catalog �with magnitude threshold 2.0 �17	�, we
now consider the aftershock series related to the Landers
earthquake with magnitude 7.3 �which occurred at 11:57 UT
on 28 June 1992 with an epicenter at 34.2°N 116.4°W� and
the Hector Mine earthquake with magnitude 7.1 �which oc-
curred at 09:46 UT on 16 October 1999 with an epicenter at
34.6°N 116.3°W�. For these two mainshocks, Abe and Su-
zuki �34	 identified the corresponding Omori regimes by ex-
amining the best fits of the �modified form of the� Omori law
in Eq. �6� to the data based on the least-squares method.
Here, we use the same aftershock data set and plot in Fig. 6
the quantity P��1� vs �1 by means of a sliding window of
6–40 consecutive events, as above, for Landers �green ��
and Hector Mine �blue *� earthquakes, respectively. Beyond
these two aftershock series, we plot in Fig. 6 the correspond-
ing curve �red +� for all earthquakes that occurred within the
area N32

37W114
122 during the period 1973–2003 �this will be here-

after called SCEC �17	�. Interestingly, these three curves
more or less coincide and result in a common value of �1,p
�0.066, which agrees with that determined above from the
original data of Japan �Fig. 5�. Upon shuffling, all these three
curves change, but we note that the two aftershock series
�dash-dotted light blue and dotted black lines, which inter-
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estingly also almost coincide for the surrogate data� exhibit
the most noticeable change resulting in �1,p�0.060; on the
other hand, the shuffled SCEC data �dashed magenta line�
lead to �1,p�0.064 which agrees with the corresponding �1,p
determined above from the shuffled data of Japan. In other
words, when focusing on the aftershock series, we do ob-
serve that �1,p changes markedly upon shuffling, thus point-
ing to the existence of considerable temporal correlations, as
it should. It seems reasonable that an Omori sequence where
the events are clearly related should give better temporal
correlations, and larger �1,p measure changes, than events in
a larger earthquake catalog where there is a possibility of
including unrelated events.

IV. MULTIPLICATIVE CASCADES: NATURAL TIME
DOMAIN ANALYSIS

Here, we will study multiplicative cascades �or general-
ized Cantor sets �35,36	� in the natural time domain. In gen-
eralized Cantor set �multiplicative cascade�, at the initial
stage �M =1� the original region is divided into K segments
with possibly variable sizes, but the mass probability from
the left to the right is distributed by the constant weights wi,
i=1,2 , . . . ,K, with iwi=1. The same procedure can then be
followed in each segment at the stage M =2, etc. This is what
will be hereafter called the deterministic Cantor set �DCS� in
contrast to a procedure in which wi are assigned randomly
�i.e., not from the left to the right� at each segment and stage
M. The latter will be called the stochastic Cantor set �SCS�
and will be also studied by means of Monte Carlo simula-
tions. A case of special practical interest is the so called p
model �35	 in which each segment is divided equally into
two parts �K=2�, with w1= p and w2=1− p. This model, in its
SCS flavor, was originally proposed to describe turbulence

data �35,37	. Moreover, the DCS case was discussed �38	 in
relation to power-law time sequences in rice piles. What is
important about the DCS is the following: If we consider the
original region in the natural time interval A= �0,1	 ���A�
and use the obtained mass probabilities as pk in the sense of
Eq. �2�, then 
�	�=k=1

N pkexp�i	 k
N

� can be factorized and
one can obtain easily the properties of the DCS in natural
time. Under these conditions, for K=2 and equal segments,
the following relates 
M+1�	� at stage M +1 to that 
M�	� at
stage M:


M+1�	� = �p + �1 − p�exp�i
	

2
��
M�	

2
� . �7�

Equation �7� can be also generalized for K�2 into


M+1�	� = 
M�	

K
�

j=1

K

wjexp�i
�j − 1�	

K
� . �8�

Equation �7� can be also used for the calculation of �1 as
	 tends to zero. A remarkable property of �M�	�
= �
M�	��2 is that, almost independently of M, all �M�	�
have almost the same shape for natural frequencies � less
than 0.5 �see Fig. 7�. In other words, in the sense discussed
above, all these stages share the same characteristic proper-
ties but differ in the high-natural-frequency range. Moreover,
the application of Eq. �7� for �M�	� as 	 tends to zero leads
to the following relation for the �1 value at stage M +1:

�1,M+1 =
�1,M + p�1 − p�

4
, �9�

which leads to

�1,� =
p�1 − p�

3
. �10�

Thus, for p=0.3 we obtain �1,�=0.07. In Fig. 8, we compare
such a DCS with the power spectrum given by Eq. �3�; the
results are almost identical in the region �0,0.5	. Note, how-
ever, that the DCS does not satisfy the entropy S conditions
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in order to be characterized as critical �see Sec. II�. On the
other hand, the SCS flavor of the same model, which has
been proposed to describe turbulence �35,37	, also gives an
average �1�0.07 and furthermore the entropies S and S− for
the majority of the cases treated by Monte Carlo simulations
�see below� satisfy the S conditions for criticality; i.e., both S
and S− are smaller than Su �see also Ref. �18	�.

In the case of the DCS p model, the multifractal spectrum,
expressed via the generalized Hurst exponent h�q�, can be
found �36	 to be

h�q� =
1 − log2�pq + �1 − p�q	

q
. �11�

Thus, one can have a relation between �1 and the multifractal
spectrum as was initially suggested in Ref. �12	. Figure 9
depicts the relation between �1 and h�2�. As far as the sto-
chastic case is concerned, Fig. 10 summarizes the Monte

Carlo study of the same model but in its SCS flavor. Inter-
estingly, the �1,p value in Fig. 10 is around 0.070.

V. DISCUSSION

We first discuss the case when the increments of the series
of Qk are positive, independent, and identically distributed
�PIID� variables rn of finite variance. In this case Qk
=n=1

k rn and Qk is clearly linearly related to k on average.
Thus, it is expected that the continuous distribution p���,
which corresponds to pk, is p���=2�. A direct calculation
then leads to the values �1= 1

18 �0.056��u, S= 2
3 ln 2

3 − 2
9

�0.048�Su, and S−= 1
3 ln 3− 5

18 �0.088�Su, which signifi-
cantly differ from those of the “uniform” distribution. On the
other hand, when Qk are shuffled randomly, in view of the
fact that the increments have a finite variance, the distribu-
tion of Qk for a given N has also finite variance. Thus, the
results correspond to those obtained in Ref. �13	 for Qk
drawn from a PIID, which lead �13	 to Sshuf →Su as N→�.
In Appendix B, we show that also �1,shuf →�u as N→� �see
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also below�. A numerical example for exponentially distrib-
uted increments is shown in Fig. 11.

Let us now comment on the expectation value E��1� of �1

when a �natural� time window of length l is sliding through a
time series of Qk�0, k=1,2 , . . .N. For such a window, start-
ing at k=k0, the quantities pj =Qk0+j−1 /m=1

l Qk0+m−1 are de-
fined, and then the following relation can be proven �see
Appendix B�:

E��1� = �1,M + 
all pairs

�j − m�2

l2 Cov�pj,pm� , �12�

where �1,M is the value of �1 corresponding to the time series
of the averages M : 
� j �E�pj�� and Cov�pj , pm� stands for
the covariance of pj and pm defined as Cov�pj , pm��E��pj

−� j��pm−�m�	, while the variance of pj is given by
Var�pj�=E��pj −� j�2	. Let us first discuss the case when Qk

are shuffled randomly. Equation �12� then turns into �see
Appendix B�

E��1,shuf� = �u�1 −
1

l2� − �u�l + 1�Var�p� �13�

�note that Var�pj� is independent of j, and hence we merely
write Var�p��Var�pj�	. If Qk do not exhibit heavy tails and
have finite variance, Eq. �13� reveals �see Appendix B� that
E��1,shuf� rapidly converges to �u. For example, this was
found in the case of the SES activities discussed in Sec. II.
Otherwise, E��1,shuf� differs from �u, thus pointing to �1,p

��u. This is the case, for example, of the earthquakes dis-
cussed in Sec. III. Second, if Qk do exhibit time correlations,
the difference between the �1,p for the original and the
shuffled time series most likely originates from the differ-
ence of Eqs. �12� and �13�, respectively �for all the cases
treated in Sec. III, this difference mainly comes from the last
terms of Eqs. �12� and �13� since we verified that �1,M��u	.
The extent to which the latter difference differs from zero

accounts for the time correlations irrespective if Qk exhibit
heavy tails. For example, this is clearly the case of after-
shocks and possibly the case of earthquake catalogs, in gen-
eral �both of which exhibit heavy tails�, discussed in Sec. III
�see Figs. 5 and 6�.

We now turn to a challenging point that emerges from a
further elaboration of the results depicted in Fig. 4. First,
note that upon increasing the � value from �=1.3 to 2.0, the
feature of the curve changes significantly, becoming bimodal
at intermediate � values. Second, we calculate, for each �
value studied, the so-called differential entropy, defined as
SI=−�P��1�ln P��1�d�1 which is the Shannon information
entropy of a continuous probability distribution—e.g., see
�39	. �Note that the Shannon information entropy is static
entropy and not a dynamic one �13	.� Finally, we investigate
the resulting SI values versus �. Such a plot is given in Fig.
12, whose inspection reveals that SI maximizes at a value of
� lying between �=1.6 and �=1.7, which is more or less
comparable with the experimental values; see Table II. �In
particular for the case of earthquakes, this � value corre-
sponds to b�1.� This value is not practically affected by the
window length �l� chosen, since it decreases only slightly
from ��1.70 to ��1.65 upon increasing l from l=10 to l
=1000. In view of the widespread belief �e.g., �40	� that
there is a close analogy between nonequilibrium phase tran-
sitions �which is likely to be �17,18	 the case of earthquakes�
and equilibrium ones �e.g., ferromagnetic materials�—which,
however, are apparently very different problems—our study
here was extended to the well-known equilibrium criti-
cal systems by investigating the Shannon entropy SS
�−mP�m�ln�P�m�	, where m denotes the order parameter,
versus the temperature. Studying SS at various temperatures,
we find that it maximizes near Tc �for finite sizes SS diverges
proportionally to ln N as T→Tc�. For example, in Fig. 13�a�
we plot the results for the following models: the infinite-
range model �see Appendix C� of a ferromagnetic system of
N spins �si= ±1� �green dotted curves� and the 2D Ising �red
solid curves� or 3D Ising �blue dashed curves� model. We
now proceed to Fig. 13�b�, which depicts, as an example,
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P�m� for the first model at various temperatures above and
below the critical temperature Tc, for N=4096 spins. Note
that just below Tc a bimodal feature emerges, which is remi-
niscent of the one found in Fig. 4 �for intermediate � values�.
This inspired us to discuss the slight variation of the � value
�at which SI maximizes in Fig. 12� versus l by means of a
procedure analogous to well-known finite-size scaling tech-
niques. Indeed, in Fig. 14�a� we plot for three different l the
P��1� that arises when SI is approaching its maximum. These
three PDF’s almost coincide, pointing to a common bimodal
PDF. The latter, of course, is described by a single average
value E��1�, labeled �, and variability � /� �where � stands
for the standard deviation of �1�. The latter two values are
depicted with the horizontal solid lines in Figs. 14�b� and
14�c�, respectively. The appearance of the common bimodal
PDF of Fig. 14�a�, and hence the maximization of SI, can be

deduced by comparing the mean value and variability of �1
for several l values as � varies. This comparison is made in
Figs. 14�b� and 14�c�, the study of which shows that the
curves for different l intersect at �c�1.55. Note that as l
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increases the curves become steeper; thus, �c provides a
lower bound for the � value that maximizes SI as l→�.

Does the above finding in Fig. 12 mean that the b or �
value can be determined just by applying the maximum en-
tropy principle in the sense developed by Jaynes �41,42	,
who suggested to look at statistical mechanics as a form of
statistical inference and start statistical physics from the
principle of maximum entropy inference �MaxEnt�? This is
not yet clear, because a widely accepted formalism for non-
equilibrium statistical mechanics is still lacking. The fact that
in some experiments the resulting � values differ slightly
from �=1.6 to 1.7 predicted from Fig. 12 could be attributed
to the following: Figure 12 is based on randomized data,
while the actual data may also exhibit temporal correlations
�e.g., the case of aftershocks�. In addition, finite-size effects
�8	 might play a significant role.

VI. MAIN CONCLUSIONS

In summary, the origin of self-similarity may be distin-
guished as follows: If self-similarity exclusively results from
the process’ memory, the �1 value should change to
�u�0.0833 �and the values of S , S− to Su�0.0966� for the
�randomly� shuffled data. This is the case of the SES activi-
ties. On the other hand, if the self-similarity results from
process’ increments “infinite” variance only, the �1,p values
should be the same �but differing from �u� for the original
and �randomly� shuffled data. The example of earthquakes
investigated does not fully conform to the latter case most
likely due to the presence of temporal correlation.

When studying the differential entropy associated with the
PDF of �1, it maximizes when the exponent � in Eq. �4� lies
in the narrow range �1.6–1.7, in agreement with the experi-
mental findings in diverse fields. This, for the case of earth-
quakes, immediately reflects the fact that the b value in the
Gutenberg-Richter law is b�1, as actually observed.

APPENDIX A: DETERMINATION OF THE OCCURRENCE
TIME OF AN IMPENDING SEISMIC ACTIVITY

In the initial submission of the present paper on 25 Feb-
ruary 2006, the signal in Fig. 1�a� had been classified as SES
activity. Actually, on 3 April 2006 a strong seismic activity
started with an earthquake of magnitude 5.3 in a region
80–100 km west of PAT station, at which the SES activity
had been recorded. The occurrence time of the initiation of
this earthquake activity �which lasted until 19 April 2006
with earthquakes of magnitude up to 5.9� can be specified
within a narrow range around 2 days, by computing the order
parameter of seismicity �17	 �see Sec. I�, as explained in
detail in Ref. �20	.

APPENDIX B: THE EXPECTATION VALUE OF �1

FOR A GIVEN WINDOW LENGTH l

Here, we focus on the expectation value E��1� when slid-
ing a �time� window of length l through a time series of
Qk�0, k=1,2 , . . . ,N. In a window of length l starting at k

=k0, the quantities pj =Qk0+j−1 /m=1
l Qk0+m−1 are obtained,

which satisfy the necessary conditions

pj � 0, �B1�


j=1

l

pj = 1, �B2�

to be considered as point probabilities. We then define �9,11	
the moments of the natural time, � j = j / l as ��q�
= j=1

l �j / l�qpj, and hence

�1 = 
j=1

l � j

l
�2

pj − �
j=1

l
j

l
pj�2

. �B3�

Note that �1 is a nonlinear functional of 
pj�. Let us consider
the expectation value � j �E�pj� of pj. For the purpose of our
calculation the relation between the variance of pj, Var�pj�
�E(�pj −� j�2), and the covariance of pj and pm,
Cov�pj , pm��E(�pj −� j��pm−�m�) is important. In view of
Eqs. �B1� and �B2�, the quantities � j, Var�pj�, and
Cov�pj , pm� are always finite, independent of the presence of
heavy tails in Qk. Using the constraint �B2�, leading to pj
−� j =m�j��m− pm�, we obtain

Var�pj� = − 
m�j

Cov�pj,pm� . �B4�

We now turn to the evaluation of E��1� and study its differ-
ence from the one that corresponds to the average time series
M= 
�k� which is labeled �1,M. Hence,

E��1� − �1,M

= E�
m=1

l
m2

l2 �pm − �m� − �
m=1

l
m

l
pm�2

+ �
m=1

l
m

l
�m�2� .

�B5�

In view of the definition of �m, the first term on the right-
hand side of Eq. �B5� vanishes, whereas the latter two terms
reduce to the variance of ���:

E��1� − �1,M = − E��
m=1

l
m

l
�pm − �m��2� . �B6�

Expanding this variance, we get

�1,M − E��1� = 
m=1

l
m2

l2 Var�pm� + 2
j=1

l−1


m=j+1

l
jm

l2 Cov�pj,pm� ,

�B7�

which, upon using Eq. �B4�, leads to

E��1� − �1,M = 
j=1

l−1


m=j+1

l
�j − m�2

l2 Cov�pj,pm�

=
1

2
j=1

l


m=1

l
�j − m�2

l2 Cov�pj,pm� . �B8�

This relation turns into
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E��1� = �1,M + 
all pairs

�j − m�2

l2 Cov�pj,pm� , �B9�

where all pairs� j=1
l−1m=j+1

l . Equation �B9� is just Eq. �12� of
the main text.

From there on we assume that Qk do not exhibit time
correlations, which is the case, for example, of randomly
shuffled data. As the window is sliding throughout the whole
time series, Qk take, of course, every position j within the
window of length l. Then, Eq. �B2� leads to

E�pj� =
1

l
, �B10�

and Cov�pj , pm� becomes independent of j and m, and Eq.
�B4� then leads to Cov�pj , pm�=−Var�p� / �l−1� �Var�pj� is
also independent of j, and for this reason Var�pj� was merely
substituted by Var�p�	. Moreover, �1,M reduces to �1,c, where
�1,c corresponds to the constant time series K= 
xk� :xk=1/ l,
k=1,2 , . . . , l, which is given by

�1,c = 
m=1

l
m2

l3 − �
m=1

l
m

l2�2

= �u�1 −
1

l2� , �B11�

where �u=1/12�0.0833. Turning now to Eq. �B7� and by

adding and subtracting
Var�p�

l−1  m2

l2 , we obtain, for the shuffled
data,

E��1� = �u�1 −
1

l2� − �u�l + 1�Var�p� , �B12�

which is just Eq. �13� of the main text. In view of Eqs. �B1�
and �B2�, Var�p�E�p2�E�p�=1/ l, and thus the second

term in Eq. �B12� remains finite for l→�. If Qk do not ex-
hibit heavy tails and have finite variance, Var�p� scales �13	
as 1/ l2 and thus E��1� rapidly converges to �u, validating the
criterion suggested in Sec. II. Otherwise, the expectation
value of �1 of the shuffled data differs from �u, thus pointing
to �1,p��u and hence detects the presence of heavy tails in
the examined time series.

APPENDIX C: THE INFINITE-RANGE MODEL OF A
FERROMAGNETIC SYSTEM OF N SPINS „si= ±1…

The Hamiltonian for such a system is given by �J�0�
H=− Jm2

2N where m=i=1
N si is the total magnetization. This sys-

tem, which undergoes a second-order phase transition at Tc
=J /k �where k is the Boltzmann constant�, is exactly solv-
able by the mean-field theory �e.g., �43	�. The degeneracy
g�m� of a state with a given m is just the number of combi-
nations one can flip �N−m� /2 out of N spins:

g�m� =
N!

�N − m

2
� ! �N + m

2
�!

, �C1�

resulting in a canonical �ensemble� point probability

P�m� =

g�m�exp� Jm2

2NkT
�


n

g�n�exp� Jn2

2NkT
� , �C2�

where the summation is over all the possible values of m.
Equation �C2� was used to obtain the results plotted in Fig.
13�b�.
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