
Additional information for the paper ‘Identifying sudden cardiac death risk and
specifying its occurrence time by analyzing electrocardiograms in natural time’

Appendix 3

Interrelation between ∆Sshuf and σ/µ in the case of IID

If we consider Qk, where Qk ≥ 0, k = 1, 2, . . . N , we obtain the quantities

pk = Qk/

N∑

l=1

Ql,

which satisfy the necessary conditions[1]: pk ≥ 0,
∑N

k=1 pk = 1 to be considered as point

probabilities. We then define[2–4] the moments of the natural time χk = k/N as

〈χq〉 =

N∑

k=1

(k/N)qpk

and the entropy

S ≡ 〈χ lnχ〉 − 〈χ〉 ln〈χ〉,

where

〈χ lnχ〉 =
N∑

k=1

(k/N) ln(k/N)pk.

The effect of the time reversal operator[5] on Qk is obtained by T pk = pN−k+1, and, similarly,

the time-reversed entropy T S(≡ S−) is obtained by the same formula as S but by using

pN−k+1 instead of pk.

The relevant expressions for evaluating S and S−, when a window of lenght i(= N) is

sliding pulse by pulse through a time series, are given in Appendix 2 deposited in the same

directory as this file.

Here, we consider the case when Qk are independent and identically distributed (IID)

positive random variables. It then follows that the expectation value E(pk) = E[Qk/
∑N

l=1 Ql]

of pk equals 1/N :

E(pk) =
1

N
. (1)

Equation (1) results from the fact that, since Qk are IID, we have:

E[

N∑

k=1

Qk/

N∑

l=1

Ql] = 1 = NE(pk).

For the purpose of our calculations, the relation between the variance of pk,

Var(pk) = E[(pk − 1/N)2],
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and the covariance of pk and pl,

Cov(pk, pl) = E[(pk − 1/N)(pl − 1/N)],

is of central importance. Using the constraint
∑N

k=1 pk = 1, leading to pk − 1/N =
∑

l 6=k(1/N − pl), and the fact that Qk are IID, we obtain

E
[
(pk − 1/N)2

]
= E

[
(pk − 1/N)

∑

l 6=k
(1/N − pl)

]
= −(N − 1)E [(pk − 1/N)(pl − 1/N)] .

Thus, we get

Cov(pk, pl) = −Var(pk)

N − 1
. (2)

The N -dependence of Var(pk) is obtained from

Var(pk) =
1

N2
E



(

NQk∑N
l=1 Ql

− 1

)2

 , (3)

where the quantity E[(NQk/
∑N

l=1 Ql − 1)2] is asymptotically N -independent. The latter

arises as follows: If E(Qk) = µ and Var(Qk) = σ2(< ∞), as a result of the central limit

theorem[6], we have E(
∑N

k=1 Qk/N) = µ and Var(
∑N

k=1 Qk/N) = σ2/N . The latter two

equations, for large enough N imply that

E[(NQk/

N∑

l=1

Ql − 1)2] ≈ E[(Qk/µ− 1)2] = σ2/µ2.

Thus, Eq.(3) becomes

Var(pk) =
σ2

N2µ2
. (4)

Let us first study E[S − T S] = E(S) − E(T S) for which we intuitively expect that it

equals zero for positive IID Qk. Indeed, we have that

E(S) = E

[
N∑

k=1

k

N
ln

(
k

N

)
pk −

N∑

k=1

k

N
pk ln

(
N∑

l=1

l

N
pl

)]
(5)

and

E(T S) = E

[
N∑

k=1

k

N
ln

(
k

N

)
pN−k+1 −

N∑

k=1

k

N
pN−k+1 ln

(
N∑

l=1

l

N
pN−l+1

)]
. (6)

The result of Eq.(5) depends on Var(pk) and Cov(pk, pl) (see Ref.[7]), whereas that of

Eq.(6) on Var(pN−k+1) and Cov(pN−k+1, pN−l+1). In view of the fact that both Var(pk)

and Cov(pk, pl) are independent of k and l (see Eqs.(2) and (4) above), we have

E(T S) = E(S)
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and moreover[7]:

E(S) = E(T S) =

N∑

k=1

k

N2
ln

(
k

Nχ

)
− σ2

(N − 1)µ2

(
χ2

χ
− χ

)
, (7)

where χ =
∑
k/N2 = (1 + 1/N)/2 and χ2 =

∑
k2/N3 = (1 + 1/N)[1 + 1/(2N)]/3.

We now turn to the variance of ∆S ≡ S − T S defined by

σ2[∆S] ≡ E
{

[S − T S − E(S − T S)]2
}

= E
[
(S − T S)2

]
,

in view of Eq.(7), which is of primary importance in ECG. We have that

σ2[∆S] = E
[
(S − T S)2

]
= E

[
{[S − E(S)]− [T S − E(T S)]}2]

= E
{

[S − E(S)]2
}

+ E
{

[T S − E(T S)]2
}
− 2E {[S − E(S)] [T S − E(T S)]}

= 2
[
δS2 − E {[S − E(S)] [T S − E(T S)]}

]
, (8)

where we used the fact that δS2 ≡ E
{

[S − E(S)]2
}

(originally defined in Ref.[8], see also

Ref.[7]) remains unchanged under time reversal for the same reasons as E(S) = E(T S).

The term E {[S − E(S)] [T S − E(T S)]} can be evaluated in a way similar to the one

used in Ref.[7]. Namely, we add and subtract the term
∑N

k=1
k
N
pk lnχ from S and

the term
∑N

k=1
k
N
pN−k+1 lnχ from T S. We then expand the resulting logarithmic terms

ln[1 +
∑N

l=1
l
N

(pl − 1
N

)/χ] and ln[1 +
∑N

l=1
l
N

(pN−l+1 − 1
N

)/χ] to first order in (pl − 1
N

) and

(pN−l+1 − 1
N

), respectively. This leads to

E {[S − E(S)] [T S − E(T S)]} = E

{[
N∑

k=1

k

N
ln

(
k

eNχ

)(
pk −

1

N

)
−

− 1

χ

N∑

k=1

k

N
(pk −

1

N
)

N∑

l=1

l

N
(pl −

1

N
) +

σ2

(N − 1)µ2

(
χ2

χ
− χ

)]
×

×
[

N∑

k′=1

k′

N
ln

(
k′

eNχ

)(
pN−k′+1 −

1

N

)
−

− 1

χ

N∑

k′=1

k′

N
(pN−k′+1 −

1

N
)

N∑

l′=1

l′

N
(pN−l′+1 −

1

N
) +

+
σ2

(N − 1)µ2

(
χ2

χ
− χ

)]}
, (9)

where e = 2.7182 . . . is the base of natural logarithms. If we assume that the distribution of
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Qk is symmetric around µ and keeping up to the first order in σ2/µ2, Eq.(9) simplifies to

E {[S − E(S)] [T S − E(T S)]} = E

{[
N∑

k=1

k

N
ln

(
k

eNχ

)(
pk −

1

N

)]
×

×
[

N∑

k′=1

k′

N
ln

(
k′

eNχ

)(
pN−k′+1 −

1

N

)]}
. (10)

Now, using Eqs.(2) and (4), we obtain

E

{(
pk −

1

N

)(
pN−k′+1 −

1

N

)}
=

σ2

(N − 1)Nµ2
δk,N−k′+1 −

σ2

(N − 1)N2µ2
, (11)

where δl,m is Kronecker’s delta (equal to 1 if l = m, and 0 otherwise). Substituting Eq.(11)

into Eq.(10), we finally find that

E {[S − E(S)] [T S − E(T S)]} =
σ2

(N − 1)µ2

{
N∑

k=1

k

N
ln

(
k

eNχ

)
×

× N − k + 1

N
ln

(
N − k + 1

eNχ

)
1

N
−

−
[

N∑

k=1

k

N
ln

(
k

eNχ

)
1

N

]2


 (12)

Using now Eq.(A21) of Ref.[7] for δS2, i.e.,

δS2 =
σ2

(N − 1)µ2





N∑

k=1

(
k

N
ln

k

eNχ

)2
1

N
−
[

N∑

k=1

k

N
ln

(
k

eNχ

)
1

N

]2


 , (13)

we obtain

σ2[∆S] =
2σ2

(N − 1)µ2

[
N∑

k=1

(
k

N
ln

k

eNχ

)2
1

N
−

−
N∑

k=1

k

N
ln

(
k

eNχ

)
N − k + 1

N
ln

(
N − k + 1

eNχ

)
1

N

]
(14)

Equation (14) reflects that, when a window of length i(= N) is sliding through the

randomly shuffled Qk of an ECG, the following relation holds

σ[∆Sshufi ] =
σ

µ

√
f(i), (15)

where

f(i) =
2

i− 1

[
i∑

k=1

(
k

i
ln

k

ieχ

)2
1

i
−

i∑

k=1

k

i
ln

(
k

ieχ

)
i− k + 1

i
ln

(
i− k + 1

iNχ

)
1

i

]
.
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In the main text, the numerator in the measure Ni ≡ σ[∆Sshufi ]/σ[∆Si] was calculated on

the basis of Eq.(15).
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