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Abstract – Several studies have shown that heart rate fluctuations exhibit the ubiquitous 1/f
behavior which is altered in desease. Furthermore, the analysis of electrocardiograms in natural
time reveals that important malfunctions in the complex system of the human heart can be
identified. Here, we present a simple evolution model in natural time that exhibits the 1/fa

behavior with a close to unity. The results of this model are consistent with a progressive
modification of heart rate variability in healthy children and adolescents. The model results in
complexity measures that separate healthy dynamics from patients as well as from sudden cardiac
death individuals.

Copyright c© EPLA, 2009

Among the different features that characterize complex
physical systems, the most ubiquitous is the presence of
1/fa noise in fluctuating physical variables [1]. This means
that the Fourier power spectrum S(f) of fluctuations
scales with frequency f as S(f)∼ 1/fa. The power-law
behavior often persists over several orders of magnitude
with cutoffs present at both high and low frequencies.
Typical values of the exponent a approximately range
between 0.8 and 4 (e.g., see ref. [2] and references therein),
but in a loose terminology all these systems are said to
exhibit 1/f “noise”. Such a “noise” is found in a large vari-
ety of systems, e.g., condensed matter systems (e.g., [3]),
granular flow [4], DNA sequence [5], ionic current
fluctuations in membrane channels [6], the number of
stocks traded daily [7], chaotic quantum systems [8–11],
human cognition [12] and coordination [13], burst errors in
communication systems [14], electrical measurements [15],
the electric noise in carbon nanotubes [16] and in nanopar-
ticle films [17], the occurrence of earthquakes [18], the
seismic electric signals [19] (SES) activities that are series
of transient low frequency (� 1Hz) signals arising from
cooperative orientation [20] of electric dipoles —formed
due to defects [21]— before rupture [22,23] etc. In some
of these systems, the exponent a was reported to be very
close to 1, but good quality data supporting such a value
exist in a few of them [3]. As an example we refer to
the voltage fluctuations when current flows through a

(a)E-mail: pvaro@otenet.gr

resistor [24]. As a second example we mention the case of
heart rate variability to which we now turn.
Various tests of time variation have been applied to
heart rate variability to show that, in healthy subjects,
heart rate fluctuation displays 1/f noise and fractal
dynamics with long-range correlation, e.g., see ref. [25].
These initial studies indicated rich dynamics with differ-
ences between normal individuals and patients [26]. Heart
rate variability (HRV) is a useful tool that might provide
indices of autonomic modulation of the sinus mode [27]
and its reduced value is a sign of autonomic imbalance.
Later findings (e.g., [28,29]) showed that healthy heart-
beat dynamics exhibits even higher complexity, which
is characterized by a broad multifractal spectrum. This
high complexity breaks down in illness associated with
altered cardiovascular autonomic regulation (e.g., [30,31]
and references therein). The decreased long-ranged fluctu-
ations are associated with increased mortality in cardiac
patients with congestive heart failure ([28,29,32], for a
review see [31]).
The 1/fa behavior has been well understood on the
basis of dynamic scaling observed at equilibrium critical
points where the power law correlations in time stem from
the infinite-range correlations in space (see ref. [2] and
references therein). Most of the observations mentioned
above, however, refer to non-equilibrium phenomena for
which —despite some challenging theoretical attempts
[33,34]— possible generic mechanisms leading to scale
invariant fluctuations have not yet been identified. In
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other words, despite its ubiquity, there is no yet universal
explanation about the phenomenon of the 1/fa behavior.
Opinions have been expressed (e.g., see ref. [8]) that it does
not arise as a consequence of particular physical interac-
tions, but it is a generic manifestation of complex systems.
It has been recently shown [22,35–42] that novel
dynamic features hidden behind the time series of complex
systems can emerge if we analyze them in terms of a newly
introduced time domain, termed natural time χ. This
time domain was shown [43] to be optimal for enhancing
the signals in time-frequency space when employing the
Wigner function and measuring its localization properly;
in other words natural time analysis conforms to the desire
to reduce uncertainty and extract signal information as
much as possible [43]. In a time series comprising N
events, the natural time χk = k/N serves as an index [22]
for the occurrence of the k-th event. In an electric signal,
as in the case of electrocardiograms, the evolution of the
pair (χk, Qk) is then studied [37,38,42], where Qk denotes

duration of the k-th pulse. Defining pk =Qk/
∑N

l=1Ql
and 〈f(χ)〉 ≡∑Nk=1 f(χk)pk, the entropy S in the natural
time domain is [36] S ≡ 〈χ lnχ〉− 〈χ〉 ln 〈χ〉, and depends
on the sequential order of events [37,38]. The entropy
obtained upon considering [39] the time reversal T ,
i.e., T pk = pN−k+1, is labelled by S−. It was found [39]
that, in general, S

−
is different from S, and hence S

shows the breaking of the time reversal symmetry, thus
revealing the profound importance of considering the
(true) time arrow in classifying similar looking signals
of different dynamics. The entropy change under time
reversal S−S

−
(≡∆S) has been shown in ref. [42] to

be able to provide the key measure that may identify
an impending sudden cardiac death risk. In particular,
an analysis of the time series of ∆Si, i.e., the values of
∆S obtained when a moving window of N = i successive
pulses is applied to the beat-to-beat (RR) or normal-
to-normal (NN) intervals, revealed that the scale i= 3
heartbeats, identifies the sudden cardiac death risk and
distinguishes the sudden cardiac death subjects from
truly healthy individuals as well as from those with the
life-threatening congestive heart failure (cf. the procedure
to read the RR interval time series in natural time is
schematically shown in fig. 1 of ref. [42]). This distinction
is achieved by means of the following two complexity
measures: i) N3 = σ[∆S

shuf
3 ]/σ[∆S3], which corresponds

to the ratio of the standard deviation of ∆S3 time
series obtained after shuffling the RR (NN) intervals
randomly (thus destroying any information hidden
in the ordering of the heartbeats) over the standard
deviation of original ∆S3 time series and ii) σ[∆S7].
Furthermore, in the subjects classified as having a high
sudden cardiac death risk, the measured ∆Si at the scale
i= 13 heartbeats provides an estimate of the occurrence
time of the impending ventricular fibrillation onset.
The physical origin of these complexity measures could
be understood as follows if we resort to the neural
influences on cardiovascular variability (see ref. [42] and

references therein): physiologically, the origin of the
complex dynamics of heart rate has been attributed to
antagonistic activity of the two branches of the autonomic
nervous system, i.e., the parasympathetic (PNS) and
the sympathetic (SNS) nervous systems (decreasing and
increasing heart rate, respectively), the net result of
which seems to be captured by ∆Si (see appendix 4 in the

additional information of ref. [42]). Concerning the scale i,
we consider that two clear-frequency bands in heart rate
and blood pressure with autonomic involvement have
been established, e.g., ref. [32]: i) a higher-frequency (HF)
band, in the range 0.15–0.40Hz, which is “indicative
of the pressure of respiratory modulation of the heart
rate” and ii) a lower-frequency (LF) band, between 0.05
and 0.15Hz (i.e., around 0.1Hz), which corresponds to
“the process of slow regulation of blood pressure and
heart rate” or “it reflects modulation of sympathetic or
parasympathetic activity by baroflex mechanisms”. The
scale i= 3 corresponds to the HF band while the scale
i= 13 (as well as i= 7) to the LF band. Hence, the value
of ∆Si for length scales corresponding to the HF and LF

bands can be thought as quantifying the extent to which
the processes, modulation of vagal activity primarily by
breathing and the slow regulation of blood pressure and
heart rate, are “disorganized”, respectively [42].
In view of the above, we propose here a simple evolu-
tionary model which, in the frame of natural time, leads
to 1/fa behavior with an exponent a close to unity. The
properties of this model are then compared to those of the
HRV data in healthy children and adolescents versus age
as well as to healthy or patient individuals.
The model proposed considers the following simple
evolution picture: As the number of generations n
increases by one, a new species —whose ability to survive
is characterized by a number ηn— appears. The new
species competes and eliminates only the existing species
that have a smaller ability to survive. We shall show
below that the number of species ǫn, if considered as
a function of the number of generations n, exhibits an
1/f behavior and that it increases very slowly with n,
actually logarithmically, thus very few species survive this
competitive process.
The mathematical description of the model, in terms of
set theory, is as follows: Let us consider the cardinality
ǫn of the family of sets En of successive extrema obtained
from a given probability distribution function (PDF); E0
equals to the empty set. Each En is obtained by following
the procedure described below for n times. Select a random
number ηn from a given PDF (here, we use the exponential
PDF, i.e., p(ηn) = exp(−ηn)) and compare it with all the
members of En−1. In order to construct the set En, we
discard from the set En−1 all its members that are smaller
than ηn and furthermore include ηn. Thus, En �= ∅ for all
n> 0 and En is a finite set of real numbers whose members
are always larger or equal to ηn. Moreover, max[En]�

max[En−1]. The increase of the cardinality ǫn ≡ |En| of
these sets is at the most 1, but its decrease may be as large
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Fig. 1: (Color online) (a) Example of the evolution of ǫn
vs. the number of renewals n, i.e., in natural time. An
exponential PDF has been considered for the selection of ηn.
(b) The Fourier power spectrum of (a); the (green) solid line
corresponds to 1/f and was drawn as a guide to the eye.
(c) Properties of the distribution of ǫn. The average value
〈ǫn〉 (plus) and the variance 〈(ǫn−〈ǫn〉)

2〉 (crosses) as a
function of n. The straight solid line depicts ln(n) and was
drawn for the sake of reader’s convenience.

as ǫn−1− 1. This reflects an asymmetry if ǫn is considered
as time series with respect to the natural number n. An
example of ǫn vs. n is shown in fig. 1(a). The cardinality ǫn
exhibits 1/fa noise with a very close to unity, see fig. 1(b).
The mathematical model described above, the analytical
properties of which has been discussed in detail in ref. [44],
corresponds to an asymptotically non-stationary process,
since 〈ǫn〉 ∝ lnn with a variance 〈(ǫn−〈ǫn〉)2〉 ∝ lnn (see
fig. 1(c)). In particular, it was shown analytically that [44]:

〈ǫn〉=
n
∑

k=1

1

k
, (1)

Fig. 2: (Color online) Results from 104 runs of the
model presented in fig. 1: (a) the average power spectrum,
(b) detrended fluctuation analyses of order l (DFA-l). The
black solid line in (a) corresponds to 1/f spectrum and was
drawn as a guide to the eye. For the same reason in (b), the
black solid lines correspond to αDFA = 1. In (b), the colored
solid lines correspond to the least-square fit of the average
FDFA-l, depicted by symbols of the same color; the numbers in
parentheses denote the standard deviation of αDFA-l obtained
from the 104 runs of the model. The various FDFA-l have been
displaced vertically for the sake of clarity.

〈(ǫn−〈ǫn〉)2〉=
n
∑

k=1

(

1

k
− 1
k2

)

. (2)

Equations (1) and (2) reveal that both the average value
μ≡ 〈ǫn〉 and the variance σ2 ≡ 〈(ǫn−〈ǫn〉)2〉 diverge loga-
rithmically as n tends to infinity. The point probabil-
ities p(ǫn =m), however, remain localized around μ=
〈ǫn〉 ∝ lnn since σ/μ∝ 1/

√
lnn. Thus, in simple words,

the present model suggests that the cardinality ǫn of the
family of sets En of successive extrema exhibits a loga-
rithmic creep and the 1/fa behavior when considered as
time series with respect to the natural (time) number
n. We note that a connection between 1/fa noise and
extreme value statistics has been established and proposed
as providing a new angle at the generic aspect of the
phenomena [33].
In order to check the stability of the results of fig. 1, we
present in fig. 2(a) the average power spectrum obtained
from 104 runs of the model. A sharp 1/f behavior is
observed. Moreover, in fig. 2(b), we present the results
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Fig. 3: Time series of ǫn when ηn come from fGn for various
values of H (increasing from the bottom to the top).

of the corresponding average values of FDFA-l of the
detrended fluctuation analysis [25] (DFA) obtained for
various orders l (i.e., when detrending with a polynomial
of order l, see ref. [45]). Figure 2(b) indicates that αDFA-l
is close to unity thus being compatible with the 1/f power
spectrum depicted in figs. 1(b) and 2(a).
We recall that in the aforementioned example of fig. 1(a)

showing the evolution of ǫn vs. the number of renewals
n (i.e., in natural time), an exponential PDF has been
considered. After investigating several different distribu-
tions of ηn, we conclude that the resulting spectral density
depends only very weakly —if at all— on the PDF of ηn.
We find that, in order to obtain α≈ 1, the only essen-
tial condition to be fullfilled is that the corresponding
PDF should be bounded from below. (This is a reason-
able assumption if ηn is to be considered a measure of
the ability to survive; a negative measure would corre-
spond to a species that is unable to survive.) This holds, of
course, under the assumption that ηn come from the same
PDF, i.e., they are independent and identitically distrib-
uted variables. Let us now investigate the case when ηn
come from a stationary but long-range (time) correlated
process, for example from fractional Gaussian noise (fGn).
To this end, several values of the Hurst exponent (H) have
been considered and indicative results are depicted in fig. 3
for H = 0.5, 0.7, 0.9 and ≈ 1. A noticeable difference can
be visualized in this figure upon increasing H; for H = 1,
which corresponds to the case of SES activities [22,23], the
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Fig. 4: (Color online) (a) The mean values of SDNN for male
(blue) and female (red) subjects as a function of their age. The
data come from table 1 of ref. [46]. The x-axis is in logarithmic
scale. (b) Variation of SDNN with respect to age: the data
come from fig. 4 of ref. [47] and are binned every year of age.
The vertical error bars stand for ± one standard deviation.
The dotted (blue) curve corresponds to the power law fit
suggested in ref. [47] whereas the solid (red) line corresponds
to a logarithmic creep.

results differ greatly from those corresponding to smaller
exponents, e.g., H = 0.5–0.7, which are occasionally found
in the analysis of electric signal time series emitted from
man-made electrical sources [35,36].
The model proposed amounts to a sort of shot noise

in a process showing logarithmic creep, a non-stationary
process as mentioned above. In an effort to check whether
such a non-stationarity corresponds to a case in the real-
world data, we consider here the HRV data in healthy
children and adolescents presented by Silvetti et al. [46].
In particular, the following two standard 24 h time domain
measures, among others, were computed: SDNN (standard
deviation of all normal sinus RR intervals over 24 h) and
SDANN (standard deviation of the averaged normal sinus
RR intervals for all 5min segments). Silvetti et al. [46]
evaluated 103 subjects (57 males and 46 females), aged
1–20 years, and found that SDNN and SDANN, over-
all HRV measures, increased with age and were gender-
related. These data demonstrate that, in healthy children
and adolescents, there is a progressive modification of HRV
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that may reflect a progressive evolution of the autonomic
nervous system. Using the results of Silvetti et al. [46], we
plot in fig. 4(a) SDNN vs. age in a semilogarithmic plot.
An inspection of this figure reveals that, for ages smaller
than 14 yr, in both male (blue) and female (red) subjects
an almost logarithmic creep is present, a property also
exhibited by the model as already mentioned. This loga-
rithmic creep is also present in the results of ref. [47] where
the SDNN vs. age (A) was fitted by a power law, i.e.,
SDNN= 97.2×A0.20 (ms), for the period from infancy to
adolescence. As can now be seen in fig. 4(b), which is
drawn on the basis of the data presented in fig. 4 of ref. [47]
by using averages every one year of age, a logarithmic
creep seems to provide a better description for SDNN from
early childhood to adolescence. This behavior could be, in
principle, understood in the following context: The present
model may simulate the variation of RR intervals around
a mean value determined by the sinoatrial node, thus lead-
ing to the logarithmic creep of SDNN visualized in fig. 4.
We note that the model intrinsically represents a compet-
itive evolution which is also present during the period of
childhood. The complexity of heart rate dynamics is high
in children and illustrates [47]: “an increase of choliner-
gic and a decrease of adrenergic modulation of heart rate
variability with age, confirming the progressive matura-
tion of the autonomic nervous system.” In other words, in
order to shed light on the underlying connection between
the presented model and the development of heartbeat
regulation we could say the following: Physiologically, the
origin of the complex dynamics of heart rate has been
attributed to the antagonistic activity of the PNS and
SNS, as already mentioned. It is this antagonistic activity
which seems to be captured by the present mathemati-
cal model since the basic spirit of the latter stems from a
competitive evolution process.
We now compare the results of the model in natural
time with the HRV data —actually the RR time series— of
patients and healthy subjects. These data come from long-
time ECG recordings [48] (see also ref. [42], containing on
average N ≃ 105 heartbeats for each record) of healthy
(H) subjects as well as of patients with congestive heart
failure (CHF) or atrial fibrillation (AF) or subjects that
suffered sudden cardiac death (SCD). In order to compare
with the already published results see fig. 3(b) of ref. [42]
on HRV, we consider only mature models with n≃ 106
and examine their evolution, i.e., the time series ǫn, for
the later 105 generations (recall that this is the order of
magnitude of heartbeats in a 24 h ECG recording). The
proposed model results in N3 = 2.52± 0.19 and σ[∆S7] =
(2.46± 0.25)× 10−3 shown by the (black) square in fig. 5.
Concerning N3, this is close (but below) to the minimum
value Hmin computed in H and larger the N3 values
in the vast majority of SCD (where high complexity
breaks down). As for the σ[∆S7] value, it lies to the
right of the maximum value of σ[∆S7] observed in H
as well as in the vast majority of CHF, and is located
outside the shaded region which seems to separate AF
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Fig. 5: (Color online) The complexity measure N3 vs. σ[∆S7]
for the RR time series. The green horizontal line corresponds
to the minimum value of N3, while the two vertical green lines
to the minimum and maximum σ[∆S7] values, respectively,
computed in H. The (black) square and the corresponding error
bars depict the values of the complexity measures obtained
from the model proposed here. As for the complexity measures
obtained from the model suggested in ref. [49] (using the
same parameters with those given in fig. 2 of ref. [49]), they
correspond to the (green) circle.

from the others. This result is consistent with the fact
that the (black) square corresponds to a simple 1/f
behavior, while healthy heartbeat dynamics exhibits even
higher complexity [28,29] as mentioned above. Indeed, let
us consider the stochastic feedback model proposed by
Ivanov et al. [49] which describes the healthy regulation of
biological rhythms with a clear relation to the physiology
of the heart; the effects of the sinoatrial node along
with the PNS and the SNS influences were taken into
account. This model leads [49] to an approximately 1/f1.1

behavior and generates complex dynamics that account
for the functional form and scaling of the distribution of
variations of RR. Here, we calculate the aforementioned
complexity measures in natural time that correspond
to this model (by using the same parameters as those
mentioned in fig. 2 of ref. [49]) and the results are depicted
by the (green) circle in fig. 5. Interestingly, this point lies
within the H-limits, as it should.
The simple model proposed here may be useful in other
disciplines as well. For example, ǫn may be considered
as equivalent to the dimensionality of the thresholds
distribution in the so-called coherent noise model (e.g.,
see ref. [50] and references therein). Furthermore, in the
frame of a formal similarity between the discrete spectrum
of quantum systems and a discrete time series [9], the
following striking similarity is noticed: the fact that a≈ 1
together with the behavior 〈(ǫn−〈ǫn〉)2〉 ∝ lnn of the
present model, is reminiscent of the power law exponent
and the 〈δ2n〉 statistic in chaotic quantum systems [9,10].
In summary, using the concept of natural time, a simple
competitive evolution model is proposed that exhibits
1/fa behavior with a close to unity. The model amounts
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to a sort of shot noise in a process showing logarithmic
creep, a non-stationary process, a behavior which is similar
with the fact that SDNN exhibits a logarithmic creep
with age for children and adolescents. The model predicts
complexity measures that separate healthy dynamics from
patients as well as from SCD, as intuitively expected since
it corresponds to a simple 1/f behavior.
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