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When monitoring geophysical parameters, data from segments that are contaminated by noise may have to be
abandoned. This is the case, for example, in the geoelectrical field measurements at some sites in Japan, where
high noise – due mainly to leakage currents from DC driven trains – prevails almost during 70% of the 24 hour
operational time.We show that even in such a case, the identification of seismic electric signals (SES), which are
long-range correlated signals, may be possible, if the remaining noise free data are analyzed in natural time along
with detrended fluctuation analysis (DFA).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In many cases of geophysical and/or geological interest, it happens
that for substantial parts of the time of data collection, high noise
prevents any attempt for extracting a useful signal. Data for such time
segments are removed from further analysis. The appearance of such a
noisemay be periodic as in the case treated in the present work. It is the
objective of this paper to examinewhether the remainingdata allow the
identification of long-range temporal correlations.

The present study was motivated from the results of geoelectrical
measurements in Japan aiming at the detection of Seismic Electric
Signals (SES), which are low-frequency (≤1 Hz) variations of the
electric field of the earth that precede earthquakes (Varotsos and
Alexopoulos, 1984a,b). SES sometime appears as a single signal lasting
for minutes but often many SES (hereafter called “pulses” as needed)
keep appearing during certain length of time, whichmay be as long as a
few days or more. Such a case is called SES activity. It has been shown
that the SESs in a SES activity have long range temporal correlations
characteristic to critical phenomena (Varotsos et al., 2002). The
measurements in Japan have detected clear SES either at noise-free
measuring sites or at noisy stations when the SES happened to occur at
midnight, i.e., when the noise level was low (Uyeda et al., 2000, 2002).
The major difficulty at many sites is the contamination of records by
high noise due to leakage currents from DC driven trains and other
artificial sources, against which some countermeasure such as inde-
pendent component analysis to extract signals has been attempted
(e.g., see Orihara et al. 2009). The low noise time occurs from 00:00 to

06:00 and from 22:00 to 24:00 local time (LT) when nearby DC driven
trains cease service, i.e., almost only 30% of the 24 h. Thus, the question
ariseswhether it is still possible to identify SES upon removing the noisy
data segments lasting for the period 06:00 to 22:00 every day. The
answer to this question is attempted in this paper for the casewhen the
duration of SES activity is much longer compared to those of individual
pulses, i.e., a fewdays to a fewweeks or evenmore, although admittedly
long lasting SES activity is rather seldom, limiting the applicability of the
results described below.

The key point in the present work is the use of the following two
modern methods: The natural time analysis of the remaining data and
the detrended fluctuation analysis (DFA). The present question differs
from the one inwhichwe investigated (Skordas et al., 2010) the effect of
the random in time removal of data segments of fixed length on the
scaling properties of SES activities. It also differs from the case in which
the lengths of the lost or removed data segments are random and may
follow a certain type of distribution (Ma et al., 2010).

We now briefly describe the time series analysis in natural time
χ, which is a new time domain (Varotsos, 2005; Varotsos et al., 2002,
2003a,b;). In a time series comprisingN events, the natural time χk=k/N
serves as an index for the occurrence of the k-th event. The evolution of
the pair (χk and Qk) is studied, where Qk is a quantity proportional to the
energy released in the k-th event. For dichotomous signals, which is
frequently the caseof SES activities, the quantityQk canbe replacedby the
duration of the k-th pulse. By defining pk=Qk/∑n=1

N Qn, we have found
that the variance κ1=bχ2N−bχN2, where b f(χ)N=∑n=1

N pk f(χk), of
the natural time χ with respect to the distribution pk may be used for
identifying criticality, and hence the SES activities. More specifically, the
following relation should hold for SES activities

κ1≈0:070 ð1Þ
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Beyond the condition of Eq. (1), we have shown that the SES activities,
when analyzed in natural time, exhibit infinitely ranged temporal
correlations and obey the conditions (Varotsos et al., 2005, 2006a,b):

S;SXbSu; ð2Þ

where S is the entropy S in natural time defined as: S≡bχlnχN−
bχNlnbχN (Varotsos et al., 2003a) and SX is the entropy obtained upon
time reversal. Eq. (2) states that bothSandSX are smaller than thevalueSu
(=ln2/2−1/4≈0.0966) of a “uniform” (u) distribution, e.g. when all pk
are equal.

The fact that SES activities exhibit critical dynamics, is believed to be
related to their generation mechanism (see Varotsos et al., 1993, and
references therein). In the focal area of an impending earthquake (EQ
hereafter), which contains ionic materials, the stress gradually
increases. In ionic solids a number of extrinsic defects are always
formed because they contain aliovalent impurities. These extrinsic
defects are attracted by the nearby impurities and hence form electric
dipoles the orientation of which can change through defect migration.
When the stress (pressure) σ reaches a critical value σcr, a cooperative
orientation of these dipoles occurs generating SES.

We now summarize the detrended fluctuation analysis DFA (Peng
et al., 1994; Taqqu et al., 1995) which is a novel method that has been
developed to address the problemof accurately quantifying long range
correlations in non-stationary fluctuating signals. It has been applied
to diverse fields ranging from DNA (Peng et al., 1993; Stanley et al.,
1999), to meteorology (Ivanova and Ausloos, 1999), and economics
(Vandewalle and Ausloos, 1997; Ivanov et al., 2004). DFA is, in short, a
modified root-mean-square (rms) analysis of a randomwalk. Inprinciple,
it estimates the deviations from the local trends ys(n) of a non-stationary
long time series of length N piecewise by dividing it into small segments
with length s and compute the Fluctuation function F(s), which is the
variance of ys(n):

F sð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

n=1
½ys nð Þ�2

s
ð3Þ

F(s) corresponds to the trend-eliminated rootmean square displacement
of the random walker. Then, the above computation is repeated for a
broad number of scales s to provide a relationship between F(s) and s.

When a power–law relation between F(s) and s, i.e.

F sð Þ∝ sα ð4Þ

is found, it indicates the presence of scaling-invariant (fractal) behavior
embedded in the fluctuations of the signal (Peng et al., 1994; Taqqu et al.,
1995). The fluctuations can be characterized by the scaling exponentα, a
self-similarity parameter: If α=0.5, there are no correlations in the data
and the signal is uncorrelated (white noise); the caseαb0.5 corresponds
to anti-correlations, meaning that large values are most likely to be
followed by small values and vice versa. If αN0.5, there are long-range
correlations, which are stronger for higher α (Bashan et al., 2008). Note
thatαN1 indicates anon-stationary local averageof thedataand thevalue
α=1.5 indicates Brownian motion (integrated white noise).

For stationary signals with long-range power–law correlations the
value of the scaling exponent α is interconnected with the exponent β
characterizing the power spectrum S(f)~ f−β (f=frequency) through
(Peng et al., 1993)

β = 2α−1 ð5Þ

Whenemploying natural time, DFA seems todistinguish (Varotsos et al.,
2003b) SES activities from artificial noise because, for the SES activities
the α-values lie approximately in the range

0:9≤α≤1:0; ð6Þ

while for the artificial noise (caused byman-made sources) investigated
in Greece (Varotsos et al., 2003a,b) the α-values are markedly smaller,
i.e.,α=0.65–0.8. In other words, the artificial noise recorded in Greece,
which at the most lasts for 24 h, may have long-range correlations, e.g.
α≈0.75 (see Fig. 9 of Varotsos et al. (2003a)), but none of several
artificial noises studied was found to exhibit infinitely ranged long-
range correlations (i.e., having α-value close to unity).

2. Data analysis and results

Let us suppose that we have a long time series of data s(i) (shown in
red in the example of Fig. 1), with a duration appreciably larger than
24 h for instance, and we are forced to remove the same segment of
these daily data. The portion of the 24 hour data that remain will be
hereafter labeled pr and the number of data corresponding to one
period, say 24 h, T. Thus, every T samples, (1−pr)T of them (belonging
to the shaded parts of Fig. 1) are removed. The remaining segments
(blue in Fig. 1) are concatenated to form the new time series c(i) which
is subsequently read in natural time. We now impose the following
conditions (7) and (8) on c(i) for classifying the signal as SES activity.
The condition (7) comes from the relation (6) after considering the
reasonable experimental error:

0:85≤α≤1:10 ð7Þ

The condition (8) comes from Eqs. (1) and (2) also by considering the
reasonable experimental error in κ1:

jκ1−0:07 j ≤0:01;S≤Su;S−≤Su ð8Þ

In the following subsections, in order to solve our problem, synthetic
signals will be produced and analyzed whether they obey conditions (7)
and/or (8) using a Monte Carlo comprising 103 realizations. The Monte
Carlo procedure has been used to “average” over the possible realizations
of the synthetic SES activities and noises that will be discussed later in
Sections 2.1 and 2.2 as well as the fact that both types of electric signals
may start any timeof theday. Thus, one should randomly select an integer
iinit from1up toT, andkeep in c(i) the samples s(iinit) to s(iinit+prT−1)of
s(i), i.e.,wekeepprT samples in total. Thenext segment tobekept in c(i) is
(1−pr)T samples after s(iinit+prT−1), starting from s[iinit+prT−1+
(1−pr)T+1=iinit+T] up to s(iinit+T+prT−1) and so on (see the blue
lines in Fig. 1). This way we periodically remove (1−pr)T samples and
keep prT every T samples from the original signal s(i). This Monte Carlo
simulation allows us to evaluate the probability to identify the original
signal as a SES activity.

The probability that the condition (7) is satisfied will be hereafter
labeled p1. By the same token, the probability to satisfy the condition (8)
is designated by p2. Finally, the probability to obey either condition (7)
or condition (8) will be labeled p3. Upon considering the number of
the Monte Carlo realizations (M=103), a plausible estimation error
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Fig. 1. An example of the procedure described in Section 2.1, showing data segments that
are periodically removed every T≈813 arbitrary units from the original dichotomous
time-series (red). Thegray shadedareas correspond to thehighnoise periods (e.g. 06:00−
22:00 LT in Japan) which have to be discarded daily.
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(3STD/√M) at themost around 5% is expected (cf. 1/√103≈0.032, and
STD stands for the standard deviation of the quantity calculated by
Monte Carlo, e.g., see Weinzierl, 2000).

Since we are interested in the low cultural noise night-window, we
hereafter focus on the pr values varying from pr=0.2 to roughly
pr=0.3. The following two subsections summarize the results obtained
for synthetic long duration SES activities and synthetic noise, respec-
tively. The first subsection concludes that when using p3 the remaining
data are highly probable to enable the identification of a SES activity.
Thismeans that theuseof either condition (7) or conditions (8), i.e. p3, is
better to be used for the classification of a signal as a SES activity. Thus,
such a probability can be thought as the conditional probability p(SES|
SES), i.e., the probability to identify a true SES activity as such, after
periodic data loss (cf. the complementary probability to miss a true SES
is labeled pmiss≡1−p(SES|SES)). The second subsection deals with
another conditional probability p(SES|noise), labeled pnoise (Fig. 2), to
erroneously identify a noise as SES activity when using conditions (7)
and (8). Finally, results from a real world data set are provided in the
third subsection.

2.1. Results obtained from synthetic long duration SES activities

In order to construct synthetic long duration SES activities, one has to
make use of a model for both the time-series of the pulse durations Qk

and the appropriate waiting times Wk, i.e., the times elapsed between
consecutive emissions of SES pulses. Since for actual data (e.g. see
Varotsos et al., 2003b) Qk and Wk exhibit different behavior when
studied by DFA, we follow below different methods to generate the
corresponding time series.: We start with the results of the DFA of the

pulse durations Qk: Its DFA analysis reveals (Varotsos et al., 2003b) an
exponent α ≈ 1, i.e., Qk exhibit very strong long-range correlations
(infinitely ranged long-range correlations). This led Varotsos et al.
(2006b) to study in natural time the one sided segments of a fractional
Gaussian noise (fGn). fGn, which is stationary and Gaussian with zero
mean, corresponds to the time series of the increments of a fractional
Brownianmotion (fBm) BH(t) with self-similarity index H (Mandelbrot
and van Ness, 1968); the latter is the Gaussian generalization of the
Brownian motion – random walk – in the sense that its root mean
square displacement is proportional to the H-th power of the time lag,

i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈 BH tð Þ−BH sð Þð Þ2〉

q
∝ jt−sjH (cf. for H=0.5 we simply recover the

behavior of a random walk). Thus, for H=0.5 fGn is just white noise
whereas for HN0.5 it corresponds to DFA exponents α≈H. Here, we
model the durations Qk as the one sided segments of a fractional
Gaussian noise with H≈1, because Varotsos et al. (2006b) have shown
that in this caseboth conditions (7) and (8) are satisfied.Wenowturn to
the time series of thewaiting timesWk and consider that for actual data
their DFA exponent α scatters around α≈0.5 (e.g. see Table III of
Varotsos et al., 2003b), which reflects that there are almost no temporal
correlations or at least the absence of significant long-range time
correlations. Additionally, in the Supplementalmaterial ofVarotsos et al.
(2003a), we showed that the waiting times' statistics cannot be fully
accounted for by an exponential distribution, thus they cannot be fully
characterized as simply random (Poissonian). Moreover, their distribu-
tions for various SES activities (e.g. see Table II of the Supplemental
material of Varotsos et al., 2003a) do not seem to share obviously
common properties. This may be understood in the frame of the
aforementioned SES generation mechanism (see Varotsos et al., 1993,
and references therein) during the preparation stage of a strong EQ: A

Fig. 2. Flow-chart of the method proposed.
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simultaneous achievement of the stimulating (critical) stress σcr at all
points in the stressed EQ preparation volume is not intuitively expected
(Varotsos and Lazaridou, 1991; see also p.258 in Varotsos, 2005).When
the condition σ=σcr is fulfilled in a sub-volume of the EQ preparation
volume, a SES pulse is emitted. Thus, when this occurs consecutively in
various sub-volumes, a series of SES pulses is emitted which constitutes
a SES activity. In otherwords, the “points” obeying the conditionσ=σcr

should lie on a “surface”A, let us call it critical stress front,whichmay be
very complicated in view of the existing inhomogeneities. This front
sweeps through the preparatory volume with highly stochastic (stick–
slip like) movement, the details of which (e.g., the “stick” intervals)
determine the waiting times Wk and may depend on the specific
preparation zone and the time to the mainshock. Such a complex
behavior is difficult tomodel, but in the followingwewill assumeas first
approximation that the waiting times Wk between consecutive SES
pulses are independent and identically distributed (iid) random
variables from an exponential distribution (in simple words, this
means that Wk come from an unbiased – ideal – exponential random
number generator). This assumption will be also applied to the case of
Wk for the synthetic noise treated in the next subsection.

Along these lines, we generate synthetic dichotomous signals d(t)
that resemble long duration SES activities by the procedure described in
detail below:

(i) We first generate the durations of the pulses Ton(k)≡Qk, k=0, 1,
2, . . .,N with N≥200, that come from the one sided segments of a
fractional Gaussian noise with H=1 and satisfy both condi-
tions (7) and (8) (cf. the method to produce such segments has
been described in detail by Varotsos et al., 2006b, and can be also
visualized in Fig. 5 of the Supplemental material of that
reference).

(ii) We then generate thewaiting times between consecutive pulses,
i.e., Toff(k)≡Wk,which are independent exponentially distributed
random variables with average value τoff=τon/λ, where τon is
the average duration of pulses (i.e., τon≡bTon(k)N) and λ an
arbitrary dimensionless parameter corresponding to the ratio of
the probabilities to find the system active over the probability to
find the system inactive. Since we investigate the case of long
duration SES activities, the aforementioned critical stress front A,
obeying the condition σ=σcr, is naturally expected to propagate
“slowly”. This should correspond to long “stick” intervalsWk and
hence increased probability to find the system inactive. For these
reasons, a typical value corresponding to ten times higher
probability to find the system inactive than active, i.e., λ=0.1,
has been considered.

(iii) We then construct d(t) by assigning to it the value of 1 if the
system is active, i.e., during the emission of a pulse, at time t, or 0
otherwise. Namely, we have d(t)=0 for tbToff (0), d(t)=1 for
t∈[Toff (0), Toff (0)+Ton(1)], then d(t)=0 again for t∈(Toff (0)+
Ton(1), Toff (0)+Ton(1)+Toff (1)) and d(t)=1 for t∈[Toff (0)+
Ton(1)+Toff (1), Toff (0)+Ton(1)+Toff (1)+Ton(2)] and so on.

The time-series d(t) generated this way was then periodically cut,
following the Monte Carlo procedure described in Section 2, where the
“24hours”periodhas been selected by T=μ(τoff+τon), and μ is another
dimensionless parameter corresponding to the average number of
pulses emitted during the 24 hour period. Note that in order to make a
reliable DFA analysis we should have at least around ten pulses
(see p.301 in Varotsos, 2005, and p.3 of Ma et al., 2010) in each
remaining data segment every “day”. This reflects that even upon 80%
data loss, ten pulses should still remain every “day”, thus hereafter we
select the value μ=50. Obviously, if we consider a larger μ value, e.g.
μ=100 or 200, our results will become better. For pr=0.2, λ=0.1 and
μ=50, we obtain p1=0.45, p2=0.71 and p3=0.83 (with a plausible
estimation error 5%). These values change to p1=0.57, p2=0.73 and
p3=0.87 when pr increases to 0.3 (see Table 1).

2.2. Results from synthetic noise

Here, we discuss cases of uncorrelated (in natural time) noisewhich
gives rise to dichotomous signals, e.g. random telegraph signals
(Varotsos, 2005), which may be confused with SES activities. In
particular, the following three types of synthetic noisewill be discussed:
(a) Markovian dichotomous time-series, (b) a noise signal in which the
durations of activity come from a uniform distribution (i.e., Qk are
independent random variables uniformly distributed in [0, 2τon]) or
(c) from a Gaussian distribution (i.e., Qk are iid originating from a
Gaussian distribution with an average duration τon and a standard
deviation σ=β τon, where β is a dimensionless constant necessarily
small (e.g., β=0.1) to ensure the positivity of the “durations” Qk).

(a) Markovian dichotomous signals. This is the case of the Random
Telegraph Signals (RTS) in which both the durations of activity
and inactivity are iid exponential random variables with average
durations τon and τoff, respectively. For the case pr=0.2, λ=0.1
and μ=50, we obtain p1=0.08, p2=0.43 and p3=0.47. These
values change to p1=0.02, p2=0.43 and p3=0.44 when pr
becomes 0.3 (Table 1). Hence,we observe thatwhen using either
p2 or p3 it is probable that a Markovian dichotomous signal may
bemisinterpreted as SES activity. To avoid it, we have to perform
an additional test described in Appendix 1.

(b) Noise signals with uniformly distributed Ton. When the durations
Ton(k)(≡Qk) are independent and identically distributed uniform
random variables in [0, 2τon], the results for pr=0.2, λ=0.1 and
μ=50 are p1=0.07, p2=0.33 and p3=0.37. These values
change to p1=0.03, p2=0.29 and p3=0.31 when pr becomes
0.3. Hence, we again observe that when using either conditions
(7) or (8) (i.e., the case of p3) for the identification of a SES
activity, it is probable tomisinterpret such anoise as SES. Toavoid
it, we have to perform an additional test described in Appendix 2.

(c) Noise signals with Gaussian distributed Ton. In such a case for
β=0.1 and pr=0.2, λ=0.1 and μ=50, we obtain p1=0.08,
p2=0.02 and p3=0.10. These values change to p1=0.01,
p2=0.00 and p3=0.02 when pr becomes 0.3. These values
suggest that it is improbable to misinterpret such a noise as SES
when using p2 either for pr=0.2 or pr=0.3. The values of p1 and
p3 alone also achieve a satisfactory distinction between noise and
SES activities but to a lesser extent than p2 (see Table 1).

2.3. Results from a real world dataset

SES activities of appreciably long duration around a few weeks or
more, i.e., similar to the one observed by Uyeda et al. (2002, 2009)
almost 2 months before the case of Izu island swarm in Japan, have not
been recorded in Greece. Here, we consider as an example the SES

Table 1
The values of p1, p2 and p3 (with an estimation error 5%) obtainedwithλ=0.1 and μ=50
for the synthetic SES activities (SES), Markovian dichotomous signals (Markovian), noise
signals with uniformly distributed Ton (Uniform) and noise signals with Gaussian
distributed Ton with β=0.1 (Gaussian). The two cases pr=0.2 or pr=0.3 are shown.

Type of signal pr p1 (%) p2 (%) p3 (%)

SES 0.2 45 71 83
Markoviana 0.2 8 43 47
Uniformb 0.2 7 33 37
Gaussian 0.2 8 2 10
SES 0.3 57 73 87
Markoviana 0.3 2 43 44
Uniformb 0.3 3 29 31
Gaussian 0.3 1 0 2

a Secure distinction from SES is achieved by the statistics of σ(Ton) /μ(Ton),
see Appendix 1.

b Secure distinction from SES is achieved by the statistics of ρ=[(Ton)max−(Ton)min]/
σ(Ton), see Appendix 2.
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activity that preceded (Varotsos et al. (2009)) themost recentmajor EQ
inGreece: This,whichhadalmost 1.5 dayduration, lasted fromFebruary
29 to March 2, 2008, was followed by a magnitude Mw6.4 EQ at 38.0°N
21.5°E on June 8, 2008. Its original time series, which is not of obvious
dichotomous nature, is reproduced in Fig. 3(a). We now attempt to
answer the following question: If such a SES activity would have been
recorded in Japan, could its identificationbecomepossible by employing
the procedure proposed here?

Before proceeding we note that the identification of this SES
activity in Greece has been described in detail by Varotsos et al. (2009).
Chief among the results obtained are the following: first, the signal as
it is evident from an inspection of Fig. 3(a), comprising a number of
pulses, is superimposed on a background which exhibits frequent
magnetotelluric (MT) variations. After subtracting theseMT variations
(Varotsos et al., 2009), we find the signal depicted in Fig. 3(b), which
provides the time series that should be considered for further analysis.
Its analysis in natural time leads to the representation depicted in
Fig. 4 and the parameters κ1, S and S_ resulted in its identification as
SES activity.

In order to answer the question on the possibility to identify this –
almost one and a half day long – SES activity after significant data loss
and since it may have started any time of the day, a Monte Carlo
calculation similar to that described in Section 2 was employed. In
particular,we randomly select thefirst segment to keep starting at some
time t0 uniformly distributed during the first 24 h (i.e., the first 86,400
samples since the sampling rate is 1 sample/s), then we discard the
experimental data until t0+24 h, when the second segment to keep
starts — of course, depending on t0 the available SES data may not be
enough to allow the selection of a second segment. This is repeated for
various values of t0 and the Monte Carlo simulation shows that when
removing70%of thedata (i.e., pr=0.3),wefindaprobability of≈67% to
correctly identify this SES activity (p1=0.40, p2=0.54 and p3=0.67).
This probability becomes somewhat smaller, i.e.,≈62%, upon increasing
the data loss to 80% (p1=0.41, p2=0.40 and p3=0.62). These values of
the probability are expected to become markedly larger if the duration
of the SES activity were similar to the one observed before the 2000 Izu
Island seismic swarm in Japan.

3. Summary of results and conclusion

A flow diagram of the method proposed here to identify in the
remaining data SES activities aswell as to avoidmisinterpreting themas
noise, is given in Fig. 2. It reveals that after reading the remaining data in
natural time, the DFA exponent α may be enough to achieve that

purpose; otherwise, the quantities κ1, S, and S_ as well the statistics of
the duration of pulses should be also studied.

Our main conclusion states that when employing two modern
techniques, i.e., natural timeanalysis andDFA, a distinction betweenSES
activities (critical dynamics) and artificial noise becomes possible even
after removing periodically a significant portion of the data. In
particular, when using synthetic long duration SES activities, upon
removing 70% of the data (e.g., the data from 06:00 to 22:00 LT like in
Japan), we have a probability around 87%, or larger, to identify correctly
a SES activity. This probability becomes somewhat smaller, i.e., 83%,
when the data removal increases to 80%. In addition,when investigating
a real world data set referring to a SES activity of just one and a half day
duration, the following results are obtained: upon removing 70% (80%)
of the data, we find a probability of≈67%(62%) to correctly identify this
SES activity. The probability is expected to increase significantly for SES
activities of longerduration, i.e., a fewweeks ormoreas in the caseof the
Izu Island seismic swarm.

Appendix 1. An additional test to discriminate Markovian
dichotomous signals from SES activities

Since Markovian dichotomous signals are probable to be misinter-
preted as SES activities because their p3 values are close to 50%, we
additionally check the ratio σ(Ton)/τon of the standard deviation versus
the average duration of the pulses: TheMarkovian dichotomous signals
have a ratio varying (even in the case of 50 pulses) in the range [0.72,
1.34] with probability 98%. For the SES model used in Section 2.1, the
probability to have a ratio larger than 0.70 is only 0.2%. In other words,
we should compare the σ(Ton)/τon-value of the signal under investi-
gation with the corresponding value for an exponential distribution
having a number of samples equal to the number of pulses in the signal.
Thus, when using either conditions (7) or (8) (i.e., the case of p3) for the
identification of a SES activity, we should also study the statistics of the
durations of the recorded pulses to avoid misinterpreting a Markovian
dichotomous signals as SES.

Appendix 2. An additional test to discriminate noise signals with
uniformly distributed Ton from SES activities

As mentioned in Section 2.2(b), p3 in this case may reach values
around 33%. In order to avoidmisinterpreting such a signal as SES activity,
we again (see Appendix 1) resort to the statistics of the durations of the
pulses. In particular, we consider the ratio ρ of the range of durations for
such a noise over their standard deviation, i.e., [(Ton)max−(Ton)min]/
σ(Ton)(≡ρ), which varies (even in the case of 50 pulses) in the range
[3.0,3.8]with probability 95%.Moreover, the probability P(ρb3.7) thatρ
is smaller than 3.7 is around 94%. On the other hand, the probability that
a SES activity, modeled according to Section 2.1, has a ρ-value larger
than 3.8 is about 87.5% and increases to 92%whenwe consider a ρ value
larger than 3.7. Thus, when using either conditions (7) or (8) (i.e., the
case of p3) for the identification of a SES activity, we should also study
the statistics of the durations of the recorded pulses to obtain ρ. Then
there is approximately 90% probability to safely distinguish SES from a
noise signal with Ton uniformly distributed even in the extreme case of

Fig. 3. The SES activity from February 29 toMarch 2, 2008: (a) original time-series (b) the
same as (a) but after subtracting theMT background variations by applying the procedure
described in (Varotsos et al., 2009).
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Fig. 4. Natural time representation of the signal depicted in Fig. 3(b) according to Fig. 7
of Varotsos et al. (2009). The “durations” Qk are here presented in arbitrary units.
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recording only 50 pulses. This result becomes better if 100 pulses are
recorded in the noise-free segments. In this case, ρ varies in the range
[3.1, 3.8] with probability 98%, and P(ρb3.7) is 96%; on the other hand,
the synthetic SES activities treated in Section 2.1 result in a small P
(ρb3.7) value ~3%.
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