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A quantity exists by which one can identify the approach of a
dynamical system to the state of criticality, which is hard to identify
otherwise. This quantity is the variance κ1ð≡hχ 2i − hχ i2Þ of natural
time χ , where hfðχ Þi ¼ ∑ pkfðχ kÞ and pk is the normalized energy
released during the kth event of which the natural time is defined
as χ k ¼ k∕N and N stands for the total number of events. Then we
show that κ1 becomes equal to 0.070 at the critical state for a vari-
ety of dynamical systems. This holds for criticality models such
as 2D Ising and the Bak–Tang–Wiesenfeld sandpile, which is the
standard example of self-organized criticality. This condition of
κ1 ¼ 0.070 holds for experimental results of critical phenomena
such as growth of rice piles, seismic electric signals, and the subse-
quent seismicity before the associated main shock.

short-term earthquake prediction ∣ dynamic exponent ∣ fractional Gaussian
noise ∣ fractional Brownian motion ∣ Burridge–Knopoff “train” model

It has been shown that some unique dynamic features hidden
behind can be derived from the time series of complex systems,

if we analyze them in terms of natural time χ (1–3). For a time
series comprisingN events, we define an index for the occurrence
of the kth event by χk ¼ k∕N, which we term natural time. In
doing so, we ignore the time intervals between consecutive
events, but preserve their order and energy Qk. We, then, study
the evolution of the pair (χk, Qk) by using the normalized power
spectrum

ΠðωÞ≡ jΦðωÞj2 [1]

defined by ΦðωÞ ¼ ∑N
k¼1 pk expðiωχkÞ, where ω stands for the

angular natural frequency and

pk ¼ Qk∕∑
N

n¼1

Qn [2]

is the normalized energy for the kth event. In the time-series ana-
lysis using natural time, the behavior of ΠðωÞ at ω close to zero is
studied for capturing the dynamic evolution, because all the mo-
ments of the distribution of the pk can be estimated from ΦðωÞ at
ω → 0 (see ref. 4, p. 499). For this purpose, a quantity κ1 is de-
fined from the Taylor expansion ΠðωÞ ¼ 1 − κ1ω

2 þ κ2ω
4 þ⋯,

where κ1 ¼ ∑N
k¼1 pkχ

2
k − ð∑N

k¼1 pkχkÞ2 ≡ hχ2i − hχi2. We found
that this quantity, the variance of natural time χk, is a key para-
meter for the distribution of energy within the natural time inter-
val (0,1]. Note that χk is “rescaled” as natural time changes to
χk ¼ k∕ðN þ 1Þ together with rescaling pk ¼ Qk∕∑Nþ1

n¼1 Qn upon
the occurrence of any additional event. It has been demonstrated
that this analysis enables recognition of the complex dynamic sys-
tem under study entering the critical stage (1–3). This occurs
when the variance κ1 converges to 0.070. Originally the condition
κ1 ¼ 0.070 for the approach to criticality was theoretically derived
for the seismic electric signals (SES) (1, 2), which are transient
low frequency (≤1 Hz) electric signals that have been repeatedly
observed before earthquakes (3, 5, 6). The experimental data
showed that κ1 obtained from SES activities in Greece and Japan
attain the value 0.070 (1–3, 7–10). The emission of SES was at-
tributed to a phase transition of second order. It was also shown

empirically that the same condition κ1 ¼ 0.070 holds for other
time series, including turbulence (8) and seismicity preceding
main shocks (3, 7–11). Moreover, it has been found empirically
that main shocks occur, in terms of the conventional time, a few
days up to one week after the condition κ1 ¼ 0.070 was attained
for the seismicity subsequent to SES activity (1, 3, 7–10) support-
ing the concept that seismicity is a critical phenomenon (e.g.,
refs. 12 and 13 and references therein). Despite these numerous
successes (e.g., see refs. 3, 14), however, the condition κ1 ¼ 0.070
for criticality has remained a major stumbling block for wider
acceptance, because the validity of this condition has not been
theoretically demonstrated for the cases other than the SES
activities and the Burridge–Knopoff “train” model for earth-
quakes (15). In order to remedy this situation, in this paper, we
will try to identify the origin of the validity of the κ1 ¼ 0.070 con-
dition for a wider range of critical systems.

Explanation of κ1 ¼ 0.070 for Critical Systems
We deal with time series of signals emitted from complex dyna-
mical systems. When the system is in thermodynamic equilibrium,
it should produce stationary time series with pk independent of
χk. The situation is different when the system is not in equili-
brium. When the system approaches the critical state, clusters
of the new phase are formed by enhanced fluctuation and their
size increases as does the correlation length (16–18). But this
happens not instantly because long-range correlations develop
gradually leading to the dynamic phase transition of the second
order (17). Thus, the time series emitted in such a nonequilibrium
process will be nonstationary and pk will be not any more inde-
pendent of χk.

Using pðχÞ ¼ ∑N
k¼1 pkδðχ − k∕NÞ, which is the distribution

corresponding to pk, the normalized power spectrum of Eq. 1
can be rewritten as

ΠðωÞ ¼
Z

1

0

Z
1

0

pðχÞpðχ0Þ cos½ωðχ − χ0Þ�dχdχ0: [3]

Taylor expansion of Eq. 3 around ω → 0 leads to the value

κ1 ¼
1

2

Z
1

0

Z
1

0

pðχÞpðχ0Þðχ − χ0Þ2dχdχ0: [4]

We are interested in pðχÞ of a dynamic system approaching
criticality, which characterizes the way energy is released during
the evolution of the dynamic transition. The newly formed phase
may in general be coupled with an existing external field and
the interaction energy is expected to be proportional to the linear
dimension of the newly forming phase and hence to the correla-
tion length ξ (for example, once “charge” is conserved, in the new
phase we may only have charge separation leading to dipole
moment). Thus, we expect pðχÞ ∝ ξ. Because of the critical
slowing down when approaching dynamic transition, the time-
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dependent correlation length ξ becomes as expressed by ξ ∼ t1∕z,
where z is the dynamic critical exponent. Here we assume this
relation holds also for the natural time domain as ξ ∝ χ1∕z, which
leads to

pðχÞ ¼ Ncχ
1∕z; [5]

where Nc is a normalization constant to make ∫ 1
0pðχÞdχ ¼ 1. In

fact, Eq. 5 is plausible from the definition of pk; i.e., it represents
the normalized energy emitted during the kth event, and the en-
ergy at criticality has a power law distribution.

The above would be applied to the case of earthquakes be-
cause the state just before a big earthquake may be characterized
by a long chain of dislocations or faults just like the long chain of
aligned spins in the Ising model in the critical state. Substituting
Eq. 5 into Eq. 4, we obtain

κ1 ¼
1þ z
1þ 3z

−
�
1þ z
1þ 2z

�
2

: [6]

Substituting the value of the dynamic critical exponent z for
various universality classes of critical systems (19), we can obtain
the values of κ1 depicted in Fig. 1. Note that for most universality
classes, z varies in the region from z ¼ 2 to z ¼ 2.4, and thus (see
Fig. 1) the value of κ1 obtained by Eq. 6 is in the range of 0.068
to 0.071, including the 2D Ising model, which is qualitatively si-
milar to the process of SES emission [early and most recent
Monte Carlo calculations showed z ¼ 2.165 (see ref. 20) and
z ¼ 2.154 (see ref. 21) leading through Eq. 6 to κ1 ≈ 0.070].
These results seem to justify the substitution of t by χ because
the time t used for the computation of z in Monte Carlo steps
(MCS) is the internal clock of the system, which can be consid-
ered as equivalent to the natural time.

The Case of a 2D Ising Model
We now show numerically that in a 2D Ising system quenched
from a high temperature to a temperature close to (but below)
the critical temperature the value of κ1 approaches 0.070. The
calculations are carried out as follows: A 2D Ising system of linear
size L, with periodic boundary conditions, is prepared in a high
temperature state and then quenched to a temperature just below
Tc. Considering that the Hamiltonian for the interaction between
two spins is given by H ¼ −J∑hijisisj, where si ¼ �1 and J > 0

stands for the coupling constant between si and sj, the evolution
of the magnetization per spin Mk ¼ ∑ si∕L2 is simulated by the
standard Metropolis algorithm (22) and studied as a function of
the number k of MCS. The number k is set to zero when the sys-

tem is quenched and increases by 1 at each MCS following the
standard Metropolis algorithm. For the purpose of the present
simulation, k runs from k ¼ 1 to 104 MCS. Fig. 2A depicts the
ensemble average hjMkji of jMkj, which corresponds to the cor-
relation length ξ, obtained from 103 replicas for various sizes
L ¼ 100, 200, 400, and 1,000. It is observed in Fig. 2A that, due
to the well-known phenomenon of critical slowing down (22),

Fig. 1. The values of κ1 as a function of dynamic critical exponent z. Various
dynamical universality classes are depicted according to their dynamic critical
exponent values (see tables IV, VII, IX, and XI of ref. 19). Models A and B
correspond to nonconserved or conserved order parameter dynamics as
defined by Hohenberg and Halperin (33).
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Fig. 2. (A) Evolution of hjMk ji as a function of the number k of MCS, after an
abrupt quench to close but below Tc, up to k ¼ 104. (B) Log–log plot of A.
The broken line corresponding to z ¼ 2.165 (see ref. 20) is drawn as a guide to
the eye. (C) The evolution of as a function of κ1 when jMk j is analyzed in
natural time. The average (μ) and the one standard deviation (μ� σ) values
of κ1 are drawn with the thick and thin lines. The results are obtained by 103

runs of the model for various L.
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systems of larger linear size need larger number of MCS to finally
reach the equilibrium magnetization. We now present in Fig. 2B a
log–log plot of the values shown in Fig. 2A. This clearly reveals
that, practically independent of L, the dynamics of hjMkji is a
power law of the form hjMkji ∝ k1∕z with z very close to
z ¼ 2.165, which is the value given in ref. 20 for the dynamic ex-
ponent for the 2D Ising model (see the cyan straight line in
Fig. 2B). This dynamic model was then analyzed in natural time
by setting Qk ¼ jMkj. Fig. 2C depicts the results for κ1 as a func-
tion of the number k of MCS that followed the instantaneous
quench. It is clear that κ1 ≈ 0.070.

The Case of Self-Organized Criticality.
Natural time analysis has been applied to the experimental data-
set of a self-organized criticality (SOC) system such as rice pile
(23) as well as to the time series obtained numerically from a SOC
model based on the Burridge–Knopoff train model for earth-
quakes (15). In both cases it has been shown that κ1 converges
to 0.070 at the onset of the critical stage. Here, we present the
theoretical results obtained from the natural time analysis of time
series of the avalanches in the archetypal system that exhibits
SOC, e.g., the Bak–Tang–Wiesenfeld (BTW) sandpile model
(24). The BTWmodel is a multiparticle dynamical system where-
in the dynamics cannot be reduced to a few degrees of freedom
(24, 25). After some initial transient period, the system settles
down to a steady state described by power law distributions as
in the case of the second-order phase transitions.

Let us consider the BTW model on a D-dimensional hypercu-
bic lattice of linear size L in which the number of sand particles at
each lattice site is given by the integer variables zi ≥ 0. We perturb
the system by adding a sand particle at a site i that means
zi → zi þ 1. When zi equals the value 2D and the site becomes
unstable, the site relaxes (topples). At that time, its zi value de-
creases by 2D, and the number of sand particles of its 2D nearest
neighbors (nn) increases by one:

zi → zi − 2D; [7]

znn → znn þ 1. [8]

If the neighboring sites become unstable, an avalanche may
proceed. This avalanche stops when all sites are stable again. An
avalanche is characterized by its size s (the total number of top-
plings). According to the basic hypothesis of BTW (24), in the
SOC state the probability distribution of the avalanche sizes
exhibits power law behavior:

PðsÞ ∼ s−τ; [9]

where τ is the size exponent.
In order to proceed to numerical simulations, we study a

deterministic version of the BTW sandpile model (25), where
the random site seeding is replaced by seeding at the central site.
Wiesenfeld et al. (25) showed that the system for D ¼ 2 also
evolves into a SOC state. We found that the natural time analysis
of the series of avalanches with initial condition zi ¼ 0 leads to the
κ1 values plotted in Fig. 3 for D ¼ 2 to 7.

The κ1 values for various D plotted in Fig. 3 fluctuate around
the following values: κ1 ¼ 0.056, 0.064, 0.069, 0.071, 0.073, and
0.075 for D ¼ 2 to 7, respectively. Interestingly, these values
are given by Eq. 6 for z ¼ D∕2. This result can be understood
on the following grounds: Because an avalanche occurs every
time when 2D sand particles are fed into the central site, the num-
ber of avalanches is equal to that of particles fed n divided by
2D. Natural time increases by 1∕N when an avalanche occurs;
therefore we have

k ¼
�
n
2D

�
and χk ¼

�
n
2D

�
∕N; [10]

where N is the total number of avalanches and the brackets [.]
denote the integer part.

According to Dhar (26), formulas 7 and 8 lead to the expected
number of toppling Gij at site j upon adding a particle at site i:

Gij ∼ rij
2−D; [11]

where rij is the distance between the sites i and j. Because we deal
with a centrally fed sandpile, the total expected number of top-
plings hsi is found by integrating formula 11 in the hypersphere of
radius l of the sandpile:

hsi ∼
Z

l

0

G0jr0j
D−1dr0j ∼

Z
l

0

r0jdr0j ∼ l2: [12]

With regard to l, recent mathematical studies (27) have shown
that the linear dimension of the formed sandpile grows as

l ∼ n1∕D: [13]

Inserting Eq. 10 and formula 13 into formula 12, we obtain
hsi ∼ χ2∕D, which explains why the observed κ1 values are compa-
tible with those obtained from Eq. 6 with z ¼ D∕2.

Our results in Fig. 3 indicate that κ1 ≈ 0.07 within 10% for
D ≥ 3 but not for D ¼ 2. Note that Ktitarev et al. (28) showed
that avalanches for D ¼ 2 deviate from power law behavior.

Fractional Gaussian Noises and Fractional Brownian Motions
It has been shown (7) that when the self-similarity index deduced
from the detrended fluctuation analysis (DFA exponent α) of the
time series for fractional Brownian motions and fractional Gaus-
sian noises approaches unity, reflecting the infinitely long-range
temporal correlations, the quantity κ1 approaches 0.070. It may
be added here that the presence of long-range temporal correla-
tions in SES activities has been established because they also lead
to the values of α close to unity (29–31).

Conclusion
Based on the concept of natural time, an explanation has been
proposed for the experimental fact that κ1ð≡hχ2i − hχi2Þ becomes
equal to 0.070 when a variety of dynamical systems enter the cri-
tical stage.

D=2

D=3

D=4

D=5

D=6

D=7

κ 1

Fig. 3. Centrally fed sandpile. The evolution of κ1 versus the number of
avalanches for D ¼ 2 to D ¼ 7. The initial condition is zi ¼ 0. The κ1 values
fluctuate around κ1 ¼ 0.056, 0.064, 0.069, 0.071, 0.073, and 0.075 for
D ¼ 2 to 7, respectively. The value of κ1 ¼ 0.070 is also drawnwith the broken
horizontal line for the sake of comparison.
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The case of the Ising model was studied here because it is
widely known and in addition it is qualitatively similar to the gen-
eration mechanism of SES (5, 6, 32). The only difference is that
the factor that brings about the critical state is the temperature in
the case of the Ising model, whereas it is the stress in the focal
region in the case of SES.

Results exhibiting similar behavior were presented for other
critical systems including SOC on which unpredictability of
earthquakes has been erroneously claimed. The fact that κ1
becomes equal to 0.070 for the seismicity before the main shock
can be used for earthquake prediction purposes. Actually, the
occurrence time of a main shock is specified in advance by
analyzing in natural time the seismicity subsequent to the initia-
tion of the SES activity (1, 3, 7–10, 15). This analysis identifies

the time when the seismicity approaches the critical state, i.e.,
when the condition κ1 ¼ 0.070 is attained. The main shock
was found empirically to follow usually within a few days up to
one week. This has been successfully applied to several major
earthquakes in Greece, including the strongest one (Mw6.9) dur-
ing the last 28 years (14).
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