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Abstract – The time-series of avalanches in three systems exhibiting SOC are analyzed in natural
time χ. In two of them, i.e., ricepiles and magnetic flux penetration in thin films of YBa2Cu3O7−x,
the data come from laboratory measurements, while the third one is a deterministic model
mimicking stick-slip phenomena. We show that their scaled distributions for the variance κ1 of
natural time exhibit an exponential tail as previously found for the order parameter in seismicity
and in other non-equilibrium or equilibrium critical systems. Upon considering the entropy S− in
natural time under time reversal, the following important difference is found: In ricepiles evolving
to the critical state, S− is systematically larger than the entropy S in natural time, while in
YBa2Cu3O7−x no systematic difference between S− and S is found.

Copyright c© EPLA, 2011

Introduction. – During the last decade, a new time
domain, called natural time χ, has been introduced [1]
which has been shown [2] to be optimal for enhancing the
signals’ localization in time-frequency space, thus reflect-
ing that natural time reduces uncertainty and extracts
signal information as much as possible. Natural time
analysis (see below) has been applied to diverse complex
time-series like electrocardiograms [3–5], ion currents
fluctuations in biological membrane channels [1,6], the
statistical properties of earthquakes [7–10], seismic elec-
tric signals [1,8,11–14], which are low-frequency electric
signals that precede [15,16] earthquakes, as well as for
the determination of the occurrence time of strong earth-
quakes [7,8,10,12,13,17–19], for a review see [20].
Chief among the advantages of using natural time

analysis are the following two: First, the analysis of seismic
electric signals activities revealed that natural time can
identify when the system approaches criticality through
the conditions

κ1 = 0.070 (1)

and

S, S− <Su =
ln 2

2
− 1
4
, (2)

where κ1 stands for the variance of natural time and S,
S− for the entropy and the entropy under time reversal
(a)E-mail: pvaro@otenet.gr

in natural time that will be discussed later. Su stands for
the entropy of a “uniform” distribution in natural time,
see below. Second, the analysis of seismicity in natural
time results in a universal curve for earthquakes which
interestingly exhibits [7] over four orders of magnitude
features similar with those obtained in several equilibrium
critical phenomena [21–23] (e.g., two dimensional Ising
model) as well as in non-equilibrium systems [24–26] (e.g.,
three-dimensional turbulent flow).
To obtain the universal curve for seismicity, one has

to define [7] an order parameter of seismicity, which is
the quantity κ1 (see also below), and study the order
parameter fluctuations relative to the standard devia-
tion of its distribution P (κ1). This analysis led to the
conclusion [7] that the scaled distributions for various seis-
mic regions as well as for the worldwide seismicity (e.g.,
see the red open circles in fig. 1) collapse on the same
curve (universal). The term scaled distribution stands
for σ(κ1)P{[κ1−µ(κ1)]/σ(κ1)}, where µ(κ1) and σ(κ1)
denote the average value and the standard deviation of the
κ1 values. Such a behavior is stikingly reminiscent of the
one found earlier in the analysis of non-stationary biologi-
cal signals including heart rate [27], locomotor activity [28]
etc, where the distributions obtained for different scales of
observation fall onto a single master curve.
Recently, it has been shown [19] that the value κ1 =

0.070 can be considered as quantifying the extent of the
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Fig. 1: (Color online) The scaled distribution σ(κ1)P (y) vs.
y= (µ(κ1)−κ1)/σ(κ1) for the BK SOC system (green) with
L= 1024 sites together with the corresponding curves for the
3D ricepile (solid blue circles) and the YBa2Cu3O7−x (cyan
squares) experimental data. The red open circles correspond
to the worldwide seismicity as reported in ref. [7], whereas the
black (blue) solid lines correspond to the scaled distribution of
the order parameter for the 2D Ising model of linear dimension
L= 256(128) at (inverse temperature parameter) β = 0.4707,
which have been shown [22] to share a similar exponential tail
with the corresponding curves for the 2D XY, 3D Ising and the
2D three-state Potts model. They have been drawn as a guide
to the eye.

organization of a complex system at the onset of the crit-
ical stage [19]. This conclusion was drawn by analyzing in
natural time, a simple deterministic SOC system [29,30]
introduced to describe avalanches in stick-slip phenom-
ena which belongs to the same universality class as the
train model for earthquakes introduced by Burridge and
Knopoff [31]. Here, we investigate whether the character-
istic exponential tail found in the universal curve of seis-
micity (see fig. 1) as well as the conditions of eq. (2) are
satisfied for SOC systems. For this purpose, both theo-
retical and experimental data are analyzed. In particular,
the theoretical data come from the SOC model studied in
ref. [19] (this, for the sake of convenience, will be here-
after labeled BK SOC system). As for the experimental
data, we make use of the recent well-controlled experi-
ments performed in refs. [32,33] on three-dimensional (3D)
ricepiles as well as on the measurements on a thin film
of YBa2Cu3O7−x reported in ref. [34]. The ricepiles are
very close to the prototype [35] sandpile model of SOC,
e.g., see refs. [32,33,36,37], whereas the critical state in
superconductors has been proposed (e.g., see ref. [38])
to be a SOC system in view of the following strong
analogy between sandpiles and superconductors. As first
pointed out by de Gennes [39], when a type-II supercon-
ductor is put in a slowly ramped external field, magnetic
vortices start to penetrate the sample from its edges.
These vortices get pinned by crystallographic defects (e.g.,
dislocations), leading to the build-up of a flux gradient

which is only marginally stable in a similar fashion as
is the slope in a slowly growing sandpile. Hence, it can
happen that small changes in the applied field can result in
large rearrangements of flux in the sample, known as flux
avalanches [40–42]. Natural time analysis of the avalanches
in these two experimental systems has been performed
in ref. [43] (on the basis of the measurements reported
in ref. [37] for ricepiles and in ref. [34] for the thin films
of YBa2Cu3O7−x) which led to the following conclusions:
Both systems obey eq. (1) and their entropy S in natural
time is smaller than the entropy Su if a reasonable estima-
tion error is adopted. No investigation of the entropy S−
under time reversal has been attempted at that time.

Natural time analysis. Background. – Let us now
briefly summarize the natural time analysis employed
here. In a time-series comprising of N avalanches the
natural time χk = k/N serves as an index [1] for the
occurrence of the k-th avalanche. The evolution of the
pair (χk, Qk), where Qk is the size of the avalanche,
is studied [7,8,12,43] by means of the normalized power
spectrum given by

Π(ω) =

∣∣∣∣∣
N∑
k=1

pk exp

(
iω
k

N

)∣∣∣∣∣
2

, (3)

where pk stands for pk =Qk/
∑N
n=1Qn, ω= 2πφ and φ

denotes the natural frequency. In natural time analysis
the properties of Π(ω) or Π(φ) are studied [7] for natural
frequencies φ less than 0.5. This is so, because in this
range of φ, Π(ω) or Π(φ) reduces to a kind of charac-
teristic function for the probability distribution pk in the
context of probability theory, e.g., see ref. [20]. Accord-
ing to the probability theory, the moments of a distribu-
tion and hence the distribution itself can be approximately
determined once the behavior of the characteristic func-
tion of the distribution is known around zero. For ω→ 0,
eq. (3) leads to [1,7]

Π(ω)≈ 1−κ1ω2, (4)

where κ1 is the variance of χ given by

κ1 =
N∑
k=1

pkχ
2
k −
(
N∑
k=1

pkχk

)2
. (5)

It has been proposed [7] that the quantity Π(ω) for
ω→ 0 (or κ1) can be considered as an order parameter
for seismicity since its value changes abruptly when a
main shock occurs (cf. in this case the quantity Qk for
an earthquake is considered proportional to the energy
released during the earthquake, e.g., see refs. [7,10,19]).
It has been shown [1] that the seismic electric signals
activities (critical dynamics) have spectra Π(ω) that in
the region 0<φ< 0.5 scatter around

Π(ω) =
18

5ω2
− 6 cosω
5ω2

− 12 sinω
5ω3

, (6)
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Fig. 2: (Color online) (a) The avalanches measured in ref. [33]
(see their fig. 5.1) as a three-dimensional ricepile approaches
the critical state. (b) The values of the entropy S (blue)
and the entropy under time reversal S− (green) in natural
time as a function of the number of avalanches shown in (a).
The horizontal black line corresponds to Su. For the reader’s
convenience, the values of κ1 (red) as well the value κ1 = 0.070
(magenta) —quantifying [19] the extent of the organization of
a complex system at the onset of the critical stage— are also
shown.

which can be proven on the basis that the system is at
criticality (for a detailed proof see ref. [20]). Equation (6)
leads to a κ1 value which is equal to 0.070, being smaller
than the κ1 value κu = 1/12≈ 0.0833 that corresponds to a
“uniform” distribution [6], e.g., when Qk are independent
and identically distributed random variables.
The entropy S in natural time is defined [6] as

S =

N∑
k=1

pkχk lnχk −
(
N∑
k=1

pkχk

)
ln

(
N∑
k=1

pkχk

)
(7)

and corresponds [6,20] to the value at q= 1 of the deriv-
ative of the fluctuation function F (q) = 〈χq〉− 〈χ〉q with
respect to q (while κ1 corresponds to F (q) for q= 2). It
is dynamic entropy depending on the sequential order of
pulses [3,12]. The entropy obtained upon considering [11]
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Fig. 3: (Color online) The values of the entropy S (blue) and
the entropy under time reversal S− (green) in natural time as a
function of the number of events for the magnetic flux avalaches
measured in a typical experiment [34] on YBa2Cu3O7−x. The
horizontal black line corresponds to Su.

the time reversal T , i.e., T pm = pN−m+1, is labelled by
S−. It was found [11] that, in general, S− is different from
S, and hence S shows the breaking of the time reversal
symmetry. We note that when considering a small increas-
ing trend ε(> 0) for pk vs. k, via the parametric family [12]

p(χ; ε)≡ 1+ ε(χ− 1/2), (8)

so that the corresponding entropy in natural time is given
by

S(ε) ≡
∫ 1
0

p(χ; ε)χ lnχdχ−
[∫ 1
0

p(χ; ε)χdχ

]

× ln
[∫ 1
0

p(χ; ε)χdχ

]
, (9)

we find [12]

S(ε) =−1
4
+
ε

72
−
(
1

2
+
ε

12

)
ln

(
1

2
+
ε

12

)
. (10)

Expanding eq. (10) around ε= 0, we obtain that

S(ε) = Su+

(
6 ln 2− 5
72

)
ε+O(ε2), (11)

where Su ≡ ln 22 −
1
4 ≈ 0.0966 is the entropy of the

“uniform” distribution. Since S−(ε) simply equals S(−ε),
we observe that an increasing trend in p(χ; ε), i.e., ε > 0,
corresponds to S−(ε) values higher than S(ε).

Data analysis and discussion. – In a time-series of
avalanches comprising W events, the following procedure
was followed: Starting from the first avalanche, we calcu-
late the κ1 values using N = 6 to 40 consecutive events
(including the first one). We next turn to the second
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Fig. 4: (Color online) The values of the entropy S (blue) and the entropy under time reversal S− (green) in natural time as a
function of the number of avalanches for the BK SOC system with L= 1024 sites. The horizontal black line corresponds to Su.
For the reader’s convenience, the inset shows the excerpt N > 30× 103 in an expanded scale.

avalanche, and repeat the calculation of κ1. After sliding,
event by event, through the whole time-series, the calcu-
lated κ1 values enable the construction of the probability
density function P (κ1). As mentioned, the study of the
scaled distribution σ(κ1)P (y) vs. y= [κ1−µ(κ1)]/σ(κ1)
for the long-term seismicity has revealed [7] an exponential
tail similar to that obtained upon studying the order para-
meter fluctuations for several equilibrium and nonequi-
librium systems. In fig. 1, we reproduce with red open
circles the scaled distribution obtained [7] from the world-
wide seismicity together with that obtained from finite-
size 2D Ising systems [21–23]. We now plot in the same
figure, the scaled distributions obtained from the three
SOC systems investigated here: First, the green curve in
fig. 1 corresponds to the results obtained from the BK SOC
system. It has been obtained by analyzing time-series of
W = 105 avalanches when a system of L= 1024 sites is at
SOC (note that in order to examine the reliability —in
the sense suggested in ref. [44]— that the same holds for
other values of L, we examined the probability that the
scaled distribution for L= 512 and L= 4096 could origi-
nate from the same set as the one for L= 1024; according
to the u-test of independence of two samples performed
by means of ref. [45], the corresponding probabilities are
48% and 70%, respectively, pointing to the conclusion that
more or less the green curve in fig. 1 does not practically
depend on L). We observe that for at least three orders of
magnitude the scaled distribution for the BK SOC system
exhibits an “exponential tail” similar to that observed for
the other correlated systems. The latter tail is of profound
importance, as already mentioned in refs. [7,24], since it
shows that the probability for a rare fluctuation being

greater from the mean by five standard deviations, is
orders of magnitude higher than in the Gaussian case.
Second, the solid blue circles in fig. 1 show the results
for W = 1321 avalanches of three-dimensional ricepiles at
criticality (measured in ref. [33], e.g., see their fig. 4.2).
An inspection of these results reveals that, at least for two
orders of maginitude, the characteristic exponential tail
is again present. Third, the cyan squares in fig. 1, which
result from the analysis of the time-series of the magnetic
flux avalanches (W = 140) measured [34] in a thin film
of YBa2Cu3O7−x, seem to scatter (“wander”) around the
exponential tail found in the other two SOC systems.
In what remains, we examine whether the conditions of

eq. (2) hold for the SOC systems under study. Figure 2(b)
depicts the values of S and S− as a function of the
number of consecutive avalanches N shown in fig. 2(a).
The latter were measured in ref. [33] (see their fig. 5.1)
as a three-dimensional ricepile gets progressively closer to
SOC. We observe that S− is systematically larger than
S. This reflects that on the average the size of avalanches
increases as the system approaches SOC, thus being more
or less in agreement with the behavior expected from
eq. (11). Moreover, if we study the values of S and S−
for N > 65 —which corresponds to the convenional time
(t= 2.4× 104 s) identified in ref. [33] as the time at which
the system enters the critical state— we find that the
average value (standard deviation) of S is S = 0.070(6)
whereas the corresponding value for the entropy under
time reversal is S− = 0.089(18). Thus, returning to the
relation (2), it seems that although the condition S <Su is
systematically obeyed, the other condition S− <Su is only
marginally valid as it is violated roughly for 25% of the
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data. Note that κ1 results in κ1 = 0.070(8), hence being
in accordance with eq. (1) as well as with the κ1 value,
κ1 = 0.07(1), reported in ref. [43].
Figure 3 depicts how the values of S and S− vary

when the magnetic flux avalanches measured by Aegerter
et al. [34] in a thin film of YBa2Cu3O7−x are analyzed
in natural time. Notice that Aegerter et al. [34] measured
the magnetic flux avalanches after the steady SOC state
had been reached, thus the situation essentially differs
from that in the 3D ricepile data of fig. 2(a). Actually,
we now find that the systematic excess of S− compared
to S, found in fig. 2(b), is absent. This is so, because
in YBa2Cu3O7−x we observe that it is unclear which of
the two quantities S or S− is larger, which may reflect
that stationarity has been reached. This is fortified by the
fact that the u-test of independence of the two samples
of S and S− made using the software of ref. [45] resulted
in 24% probability that S and S− come from the same
random set. Moreover, if we study the values of S and S−
(for N > 40 so that to minimize the initial variation due
to the small number of avalanches N), we find that the
average values (standard deviations) result in S = 0.090(4)
and S− = 0.090(13). Thus, the conditions of the relation
(2) are marginally satisfied for this system at SOC.
We now finally examine the validity of eq. (2) in the

case of the avalanches obtained from the BK SOC system.
The results obtained are shown in fig. 4. We observe that
in this case the average values obtained together with the
standard deviations in parentheses are S = 0.094(6) and
S− = 0.096(9). Hence, both S and S− are very close to
the value Su of the “uniform” distribution, thus they only
marginally satisfy the conditions of eq. (2).

Conclusions. – In summary, the time-series of
avalanches have been analyzed in natural time in three
systems that exhibit SOC. In two of them, i.e., ricepiles
and magnetic flux penetration in type-II superconductors,
the data come from laboratory measurements, while the
third one is a deterministic model mimicking stick-slip
phenomena. The main conclusions are: First, their scaled
distributions for the variance κ1 of natural time share —at
least over two orders of magnitude— an exponential tail
already observed for the scaled distribution of the order
parameter of seismicity as well as for the corresponding
distributions of other equilibrium and non-equilibrium
critical systems like 2D Ising model and 3D turbulence.
Second, in all three SOC systems investigated, their
entropy S in natural time seems to be smaller than that
of the “uniform” distribution. Third, concerning the
entropy S− under time reversal, the following important
difference emerges: In ricepiles (see fig. 2(b)), S− is
systematically larger than S, which probably reflects that
the system is still evolving towards the SOC state, while
in the YBa2Cu3O7−x case —which has already reached
the SOC state— no systematic difference between S−
and S is found. The latter behavior is also observed for
the deterministic model mimicking stick-slip phenomena

studied here, i.e., the BK SOC model. As for the S− value
itself, the condition S− <Su should be considered with
care, since it may be violated in some cases. Even in such
cases, however, a safe upper bound of S− does not seem
to differ from Su more than 30%, leading to S− < 1.3Su.
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[32] Lőrincz K. A. and Wijngaarden R. J., Phys. Rev. E,

76 (2007) 040301.
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