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Here, we analyze the Olami–Feder–Christensen (OFC) model for earthquakes in a new time domain, termed
natural time χ. We show that there exists a non-zero change ΔS of the entropy in natural time upon time re-
versal. This reveals a breaking of the time symmetry, thus reflecting the predictability in the OFC model.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The self-organized criticality (SOC) concept has been originally in-
troduced by (Bak et al., 1987) using as an example the sandpile
model. The fact that avalanches seem to be uncorrelated in the original
sandpile model, has been used as an argument that is not possible to
predict the occurrence of large avalanches, e.g., relevant claims are
cited in Ramos et al. (2006, 2009). In other words, a belief has been
expressed that power-law distributed avalanches are inherently unpre-
dictable, which came from the concept of SOC, but interpreted in the
way that, at any moment, any small avalanche can eventually cascade
to a large event. However, prediction is in principle possible, as it be-
came clear from the accumulated theoretical and experimental evi-
dence (for a review see (Varotsos et al., 2011)). For example, the
prediction of extreme avalanches in self-organized critical sandpiles
has been studied in recent detailed numerical studies (Garber and
Kantz, 2009; Garber et al., 2009) which showed that particularly large
events in a close to SOC system can be predicted on the basis of past
observations.

An important contribution to SOC ideas is the Olami–Feder–
Christensen (OFC) earthquakemodel (Olami et al., 1992) which is prob-
ably (Ramos et al., 2006) themost studied non-conservative, supposedly,
SOC model. It originated by a simplification of the Burridge–Knopoff
(BK) spring-block model (Burridge and Knopoff, 1967) by mapping it
into a non-conservative cellular automaton simulating the earthquake's

behavior and introducing dissipation in the family of SOC systems. In
the OFC model the force on a block is stored in a site of a square lattice,
and the static friction threshold is assumed to have the same value over
all blocks.

The criticality of the OFC model has been debated (e.g., (de Carvalho
and Prado, 2000; Miller and Boulter, 2002)). Also, the SOC behavior of
the model is destroyed upon introducing some small changes in the
rules of themodel, e.g., replacing open boundary conditionswith periodic
boundary conditions (Pérez et al., 1996), introducing frozen noise in the
local degree of dissipation (Mousseau, 1996) or in its threshold value
(Jánosi and Kertész, 1993), including lattice defects (Ceva, 1995) –

which should not be confused with the intrinsic lattice defects in solids
(Varotsos, 2007), e.g., Schottky (Varotsos and Alexopoulos, 1979,
1984a) or Frenkel (Varotsos, 1976; Varotsos and Alexopoulos, 1978) de-
fects. Despite these findings as well as others which show (Peixoto and
Davidsen, 2008), that it is insufficient to account for certain aspects of
the spatiotemporal clustering of seismicity, the OFC model appears to
showmany features found in real earthquakes. As far as earthquake pre-
dictability (Pepke and Carlson, 1994) or Omori's law (Helmstetter et al.,
2004; Hergarten and Neugebauer, 2002) is concerned, the OFC models
appear to be closer to reality than others (Wissel and Drossel, 2006).

It has been shown (Abe et al., 2005) that the analysis of time series
of complex systems in a new time domain, termed natural time χ
(Varotsos et al., 2001, 2002, 2011), reduces uncertainty and extracts
signal information as much as possible. Natural time analysis (reca-
pitulated in Section 2) enables the study of the dynamic evolution
of a complex system and identifies when the system approaches the
critical point. Relevant applications of this new type of analysis with
interesting results have been presented in a variety of cases including

Tectonophysics 513 (2011) 49–53

⁎ Corresponding author. Tel.: +30 210 9617573; fax: +30 210 9601721.
E-mail address: pvaro@otenet.gr (P.A. Varotsos).

0040-1951/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tecto.2011.09.025

Contents lists available at SciVerse ScienceDirect

Tectonophysics

j ourna l homepage: www.e lsev ie r .com/ locate / tecto



Author's personal copy

seismicity (Sarlis et al., 2008, 2009, 2010; Varotsos et al., 2001,
2006a,2006b, 2008, 2011), identification (Varotsos et al., 2002,
2011) of the preseismic low frequency (≤1 Hz) variations of the elec-
tric field of the earth – termed Seismic Electric Signals (Varotsos and
Alexopoulos, 1984b; Varotsos and Lazaridou, 1991; Varotsos et al.,
1993) (SES) – that are emitted from the focal area when the stress
reaches a critical value (Varotsos and Alexopoulos, 1984b; Varotsos
et al., 1993, 2011) and precede earthquakes, e.g. for some recent ex-
amples see Uyeda and Kamogawa (2008, 2010) and Uyeda et al.
(2009).

It is themain scope of this paper to show, on the basis of natural time
analysis of the avalanche time series, the predictability of theOFCmodel
whose summary is given in Section 3. To achieve this aim, we shall use
recent complexity measures based on natural time, like the change
ΔS of the entropy in natural time under time reversal as discussed in
Section 4. These measures have been recently found to exhibit notice-
able variations when approaching the critical point in a variety of com-
plex systems. For example, we mention that when analyzing
electrocardiograms in natural time, e.g. see (Varotsos et al., 2005a),
we find (Varotsos et al., 2007) that: (a) The measure ΔSl at the scale
l=3 heartbeats, identifies the sudden cardiac death risk and distin-
guishes sudden cardiac death individuals from truly healthy individuals
as well as from those with the life-threatening congestive heart failure.
(b) Among those classified as sudden cardiac death individuals, the
measured ΔSl at the scale l=13 heartbeats provides an estimate of
the occurrence time of the impending risk. The main conclusion is
given in Section 5.

2. Natural time analysis. Background

Let us consider a time-series comprising N events. For example, in
the case of SES activity – which is usually a time series of dichotomous
nature – each event is a pulse of given duration Q, whereas for seismic-
ity an earthquake of magnitudem. For a time-series of avalanches each
event is an avalanche of size s. The natural time χk=k/N serves as an
index (Varotsos et al., 2001, 2002) for the occurrence of the k-th
event. In natural time analysis, the evolution of the pair (χk,Ek) is con-
sidered (Varotsos et al., 2001, 2002, 2006a, 2006b), where Ek denotes
the energy released during the k-th event. This energy is itself propor-
tional to the duration Qk of each electric pulse in the case of SES activi-
ties, whereas for seismicity it is proportional to the seismic moment
M0, which is related (Kanamori, 1978) to the magnitude m through
M0∝101.5m.

The evolution of either a SES activity or a series of earthquakes in
natural time, can be analyzed as follows: For a SES activity, we consid-
er the evolution (χk,Qk), and define the continuous function Π(ω):

Π ωð Þ ¼ Φ ωð Þj j2 ¼
XN
k¼1

pkexp iω
k
N

� ������
�����
2

; ð1Þ

where pk ¼ Qk=∑N
j¼1 Qj, and ω=2πϕ, ϕ the natural frequency. For a

seismic activity, we consider the evolution (χk, (M0)k), i.e., by ascrib-
ing to the k-th event, instead of Qk, the corresponding seismic mo-
ment (M0)k. The continuous function Φ(ω) is then defined by
Eq. (1) with pk ¼ M0ð Þk=∑N

j¼1 M0ð Þj; for seismic events. Note, that in
both cases, Π(ω) is a normalized power spectrum (Varotsos et al.,
2001, 2002) that describes the process in natural time.

We focus on the properties of Π(ω) or Π(ϕ) for natural frequen-
cies ϕ less than 0.5, since in this range of ϕ, Φ(ω) or Φ(ϕ) reduces
(Varotsos et al., 2001, 2002, 2011) to a characteristic function for the
probability distribution pk in the context of probability theory.
According to the probability theory, the moments of a distribution
and hence the distribution itself can be approximately determined
once the behavior of the characteristic function of the distribution is
known around zero. For ω→0, a Taylor expansion of Eq.(1) reveals

that Π(ω)≈1−κ1ω2 where κ1 is the variance of χ given by κ1=
〈χ2〉− 〈χ2〉, where f χð Þ ¼ ∑N

k¼1 pkf χkð Þ.
The entropy S in natural time is defined (Varotsos et al., 2011) as

S= 〈χlnχ〉− 〈χ〉ln〈χ〉. It is dynamic entropy depending on the sequen-
tial order of pulses, e.g., see (Varotsos et al., 2005a, 2008). The entropy
obtained upon considering (Varotsos et al., 2005b) the time reversal
is labeled by S−. The time reversal T is defined by Tpm=pN−m+1,
which means that the last event becomes first, the last but one be-
comes second etc. It was found (Varotsos et al., 2005b) that, in gener-
al, S− is different from S, and hence S shows the breaking of the time-
reversal symmetry. We note that when considering a small increasing
trend ε(>0) for pk versus k, via the parametric family (Varotsos et al.,
2006b, 2008)

p χ; εð Þ≡1þ ε χ−1=2ð Þ; ð2Þ

so that the corresponding entropy in natural time is given by

S εð Þ≡∫ 1
0 p χ; εð Þχlnχdχ− ∫ 1

0 p χ; εð Þχdχ
h i

ln ∫ 1
0 p χ; εð Þχdχ

h i
; ð3Þ

we find (Varotsos et al., 2006b, 2008)

S εð Þ ¼ −1
4
þ ε
72

− 1
2
þ ε
12

� �
ln

1
2
þ ε
12

� �
: ð4Þ

Expanding Eq. (4) around ε=0, we obtain that

S εð Þ ¼ Su þ
6ln2−5

72

� �
ε þ O ε2

� �
; ð5Þ

where Su≡ 2ln2−1
4 ≈0:0966 is the entropy of the “uniform” distribution

(Varotsos et al., 2011), e.g., when Ek are independent and identically
distributed random variables. Since S−(ε) simply equals S(−ε), we
obtain that

S− εð Þ−S εð Þ ¼ 5−6ln2
36

� �
ε þ O ε3

� �
; ð6Þ

thus reflecting that an increasing trend in p(χ ;ε), i.e., ε>0, corre-
sponds to positive S−(ε)−S(ε). The difference S−−Swill be hereafter
labeled ΔS (cf. if we alternatively (Varotsos et al., 2007) use this sym-
bol to denote the opposite quantity, i.e., S−S−, obviously an increas-
ing trend would correspond to negative S−S−). The quantity ΔS may
also have a subscript (ΔSl) meaning that the calculation is made (for
each S and S−) at a scale l (=number of successive events). In such
a procedure, a window of length l is sliding, each time by one event,
through the whole time series. The entropies S and S−, and there
from their difference ΔSl, are calculated for each event. Thus, we
form a new time series consisting of successive ΔSl values.

3. The Olami–Feder–Christensen (OFC) model

The OFC model runs as follows: we assign a continuous random
variable zij∈(0,1) to each site of a square lattice, which represents
the local ‘energy’. Starting with a random initial configuration taken
from a uniform distribution in the segment (0,1), the value zij of all
sites is simultaneously increased at a uniform loading rate until a
site ij reaches the threshold value zthres=1 (i.e., the loading Δf is
such that zij

� �
max þ Δf ¼ 1). This site then topples which means that

zij is reset to zero and an ‘energy’ αzij is passed to every nearest neigh-
bor. If this causes a neighbor to exceed the threshold, the neighbor
topples also, and the avalanche continues until all zklb1. Then the uni-
form loading increase resumes. The number of topplings defines the size
s of an avalanche or “earthquake”. This is the quantity that is used as
the energy Ek in natural time analysis (Varotsos et al., 2011).

The coupling parameterα can take values from zero to 0.25. Smallerα
means more dissipation, and α=0.25 corresponds to the conservative
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case. The parameter α is the only parameter of the model, apart from the
system size L, the edge length of the square lattice. Except from the initial
condition themodel is deterministic. Themodel can be supplemented by
open boundary conditions in which the sites at the boundary distribute
energy to the outer sites, which cannot topple, thus energy is removed
at the boundary. Another possibility, is to use free boundary conditions:
In this case, α varies locally

αij ¼
1

nij þ K
ð7Þ

where nij is the actual number of nearest neighbors of the site ij. For sites
in the bulk nij=4, for sites at the edges nij=3 and for the four sites at the
corners nij=2. The symbol K denotes the elastic constant of the upper
leaf springs measured relatively to that of the other springs between
blocks (Helmstetter et al., 2004) in the BK model. Obviously the OFC
model is non-conservative for K>0 for which αijb0.25 in the bulk. Final-
ly, periodic boundary conditions (PBC) can be imposed but these destroy
(Pérez et al., 1996) criticality.

Concerning the study of the transient regime of the OFC model, it
can be simplified (Varotsos et al., 2011) when done in terms of the
quantity f=∑(Δf), which represents the total increase of zij due to
the external force loading in each site. Since the loading rate is as-
sumed uniform in time, f plays a role analogous to that of the conven-
tional time T≡ f. de Carvalho and Prado (2003) found that the
conservative and non-conservative cases display a qualitatively dif-
ferent behavior. This has been also verified by natural time analysis
(Varotsos et al., 2011). Here, in what follows, we shall solely focus
on the stationary regime of the OFC model.

4. The predictability of the OFCmodel using the entropy change ΔS
under time reversal

We first mention that the predictability of the OFC model, for
which the presence of ‘foreshocks’ (as well as ‘aftershocks’) has
been identified by Hergarten and Neugebauer (2002) in the non-
conservative case, has been studied by Pepke and Carlson (1994)
and Pepke et al. (1994). Recently Caruso and Kantz (2011) have pro-
vided an efficient algorithm for the prediction of large avalanches
solely based on the past avalanches for the non-conservative OFC
model on a small world topology. Moreover, Varotsos et al. (2011)
have shown that if we consider the mean ‘energy’ per site ζ=∑zij/
L2 which is a function of the ‘time’ T, as a decision variable such a
goal is possible even for the OFC model on a square lattice. Here, we
focus our interest on the entropy change ΔS in natural time before
large avalanches in the original OFC model on a square lattice and
show that ΔS may provide a decision variable for the prediction of a
large avalanche in the next natural time step.

The occurrence of ‘foreshocks’ as well as ‘aftershocks’ in the OFC
model has been exhaustively studied by Helmstetter et al. (2004).
Here, we solely focus on the former (foreshocks) that are described
by the so-called inverse Omori's law (Helmstetter et al., 2003, 2004)
which states that the average increase of seismicity observed at the
time t before the occurrence time tc of a mainshock is given by

Nf tð Þ ¼ Kf

tc−t þ cð Þpf ð8Þ

where the subscript “f” refers to the foreshocks and the quantities Kf

and c are taken constants. The inverse Omori's exponent pf is usually
close to or slightly smaller than the corresponding (Helmstetter and
Sornette, 2003) exponent pa of the usual Omori's law for aftershocks.
Helmstetter et al. (2004) defined “mainshock” (see their definition
d=0) as any earthquake of magnitude m which was not preceded
or followed by a larger earthquake in a time window of length T(m)
equal to 1% of the average return time of an earthquake of magnitude

m. Foreshocks are then selected as all earthquakes occurring within
the time T(m) before a mainshock. The value of pf has been found
by averaging the seismicity rate before a large number of mainshocks
(Helmstetter and Sornette, 2003), because there are huge fluctuations
of the rate of seismicity before individual mainshocks. Thus, following
the method of study of foreshocks in Helmstetter et al. (2004), our re-
sults for ΔS are found by averaging the values obtained before an ap-
preciably high number of large avalanches.

Assuming that the large avalanche occurs at T0, Fig. 1 depicts the
results for the average change ΔS (left scale) of the entropy in natural
time under time reversal and the average value of the mean ‘energy’ ζ
(right scale) obtained by using the last 500 avalanches (irrespective
of their size) before a large avalanche of size s≥100 (red), 500
(green) and 700 (blue) in the non-conservative OFC model with
L=64 and K=2. They have been obtained by analyzing 107 ava-
lanches after the system has reached the steady SOC state. In the hor-
izontal axis, the time is measured from the occurrence time T0 of the
large avalanche. We find that the magnitude of ΔSl maximizes before
the impending large avalanche, thus signaling the imminent major
event. The positive values of ΔS reflect, through Eq. (6), that the ava-
lanche size tends to increase as the time approaches that of the main-
shock (cf. due to the foreshocks, mentioned above, that start to
become discernable from the background seismicity). The decrease
of ΔS that occurs after a maximum at T0−T≈0.15 before the main-
shock, reflects that the ‘effective’ trend ε, which was defined in natu-
ral time (see Eq. (2)), should simultaneously decrease. This appears
so, because it is the relative intensity of the events that is considered
(through pk ¼ Ek=∑N

j¼1 Ej) in the calculations in natural time. Using
Eq. (8) and taking as a measure of the ‘effective’ trend the ratio of
pN which corresponds to the last event (i.e., the foreshock that oc-
curred just before the mainshock at time t−1) over p1, we obtain that

pN
p1

¼ tc−ti þ c
tc−t−1 þ c

� �pf
; ð9Þ

where ti denotes the time of occurrence of the initial foreshock taken
into account in the natural time entropy calculation. As ti approaches
t−1, Eq.(9) results in smaller values of pN/p1, thus reflecting a decreas-
ing effective trend ε. In fact, Fig. 1 shows that the average entropy
change in natural time becomes zero when T0−T≈0 (in this case,
Eq. (9) leads to an absence of trend since pN/p1→1 as ti→ t−1). Fur-
thermore, note that ΔS changes sign, becoming positive, when the
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Fig. 1. Results from averaging the last 500 events before a large avalanche (s≥100, 500,
700 occurring at T0) in the OFC model with L=64 and K=2: The change ΔS (left scale,
thick lines) of the entropy in natural time under time reversal and the mean energy ζ
(right scale, thin lines) as a function of the ‘time’ (T0−T) to the large avalanche. Note
that ΔS maximizes before the occurrence time T0 of the large avalanche, and changes
sign when ζ almost starts to increase.

51N.V. Sarlis et al. / Tectonophysics 513 (2011) 49–53



Author's personal copy

parameter ζ almost starts to increase (cf. recall that the quantity ζ as
mentioned can be used as a predictor for the large avalanches).

Proceeding one step further, we now examine whether the entro-
py change ΔS in natural time under time-reversal can be used for the
prediction of a large avalanche in the next natural time step. For this
reason, based on the results shown in Fig. 1, we determine the quan-
tity �ΔS which is the average value of ΔS using the past events that oc-
curred at time T within the period ΔT=Tnow−T=0.05 to 0.2, where
Tnow stands for the present time. The quantity �ΔS can be considered as
a decision variable in the sense that the time increased probability
(TIP) is turned on when �ΔS > �ΔSc, where �ΔSc is a given threshold in
the prediction. If the size s of the next avalanche is greater than a tar-
get avalanche size threshold sc, we have a successful prediction. For
binary predictions, the prediction of events becomes a classification
task with two types of errors: missing an event and giving a false
alarm. We therefore choose, following (Garber et al., 2009), the re-
ceiver operating characteristics (ROC) graph (Fawcett, 2006) to de-
pict here the prediction quality. This is a plot of the hit rate versus
the false alarm rate, as a function of the total rate of alarms, which
here is tuned by the threshold �ΔSc. Only if in between the hit rate ex-
ceeds the false alarm rate, the predictor is useful. Random predictions
generate equal hit and alarm rate, and hence they lead to the diagonal
in the ROC plot. (If �ΔSc is maximum, both hit rate and false alarm rate
are zero, while for very small �ΔSc values both rates tend to unity.)
Thus, only when the points lie above this diagonal the predictor is
useful. As an example, the ROC graph for L=64 and K=2 is shown
in the inset of Fig. 2. For every given threshold value �ΔSc and a target
threshold sc, we get a point in this plot, thus varying �ΔSc we get a
curve. The various curves in the middle of the inset of Fig. 2 corre-
spond to various values of sc increasing from the bottom to the top.
Recalling that the diagonal line in such a plot corresponds to random
predictions, and the points in each curve lie above it (meaningful pre-
diction), we conclude that the precursory function �ΔS can be consid-
ered as a possible predictor. In order to investigate the statistical
significance of the results as well as the reason behind the possible
predictive power of �ΔS, we insert in Fig. 2 the results obtained (blue
curves) from 100 trials when performing the same calculation by
using randomly shuffled �ΔS values. We observe that the results

obtained for the original �ΔS time-series are well above those obtained
even from the extreme of 100 trials using randomly shuffled �ΔS
values. Thus, the predictions made on the basis of �ΔS are statistically
significant, and as concerns the origin of their predictive power it
should be attributed to the fact that ΔS is able to catch the ‘true’
time arrow as mentioned.

5. Conclusion

The natural time analysis of the avalanches in the stationary re-
gime of the OFC model reveals that that there is a non-zero change
ΔS of the entropy S in natural time under time-reversal. This signals
the breaking of the time symmetry, thus reflecting predictability in
the OFC model.
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