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Abstract – By analyzing in natural time the Southern California Earthquake Catalog (SCEC)
during the period 1979–2003, the probability distribution of the order parameter of seismicity
is studied. Remarkable changes in the feature of this distribution are identified well before the
occurrence of the three major mainshocks reported by SCEC: Landers in 1992, Northridge in
1994 and Hector Mine in 1999. In addition, just before the occurrence of these mainshocks, i.e.,
for 100 successive events of magnitude M � 2.0 before each of them, their scaled order parameter
probability distributions almost collapse onto a single curve and share over two orders of magnitude
a characteristic “exponential tail” reflecting non-Gaussian fluctuations.

Copyright c© EPLA, 2012

Introduction. – Phase transitions are considered of
crucial importance in statistical physics in view of their
applications in a multitude of diverse fields. The order
parameter of a system in the critical state is expected to
undergo non-Gaussian fluctuations, but almost nothing is
known [1] about the mathematical form of the possible
probability distributions of the order parameter except of
a few cases [1,2]. Any result to understand which kind
of fluctuations the order parameter can experience at
criticality is of chief importance.
Seismicity exhibits complex correlations in time,

space and magnitude (M) which have been studied by
several authors [3–13]. The observed earthquake scaling
laws [14,15] are widely accepted to indicate the existence
of phenomena closely associated with the proximity of
the system to a critical point [16–19]. An order parameter
for seismicity has been introduced [20] by means of the
analysis in a new time domain, termed natural time χ
(see below). It is the main objective of this paper to tackle
the following challenging issue: To identify the features
of the probability distribution of the order parameter
of seismicity when approaching the critical point. In
particular, we shall investigate what happens before the
occurrence of major earthquakes in California.

Natural time analysis of seismicity. The data
analyzed. – Novel dynamical features hidden behind

time series in complex systems emerge upon analyzing
them in natural time, χ. This analysis, originated almost
a decade ago [21–24], has been shown [25] to be optimal
for enhancing the signals in time-frequency space when
employing the Wigner function and measuring its local-
ization property. It has found applications in a variety
of fields compiled in a recent monograph [26], including
Cardiology, e.g., the identification of the sudden cardiac
death risk [27–29], and Geophysics. Specifically, for the
case of earthquakes, in a time series comprising N events,
the natural time χk = k/N serves as an index for the occur-
rence of the k-th earthquake (EQ). It is the combination
of this index with the energy Qk released during the k-th
earthquake of magnitudeMk, i.e., the pair (χk, Qk), which
is studied in natural time analysis. Alternatively, one can
study the pair (χk, pk), where

pk =Qk/
N∑
n=1

Qn (1)

denotes the normalized energy released during the k-th
earthquake. In natural time analysis, it has been found
[20–24,26] that a quantity of profound importance is the
variance of χ weighted for pk, designated by κ1, given by

κ1 =

N∑
k=1

pkχ
2
k −
(
N∑
k=1

pkχk

)2
. (2)
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This quantity becomes equal to 1/12 for a “uniform” (u)
distribution, e.g. when all pk are equal or Qk are positive
independent and identically distributed random variables
of finite variance [27]. In this case, κ1 is designated by
κu(= 1/12). Note that the energy Qk, and hence pk, for
earthquakes is estimated through the usual relation [30]

Qk ∝ 101.5Mk . (3)

The seismic data used in the present study come from the
Southern California Earthquake Catalog (SCEC) available
from www.data.scec.org/eq-catalogs/date mag loc.

php on 17 July 2012. The seismic data with M � 2.0
within N3732W

122
114 have been analyzed in natural time.

It has been argued in detail [20] (see also pp. 249–253
of [26]) that the quantity κ1 given by eq. (2) can be
considered as an order parameter for seismicity since
its value changes abruptly when a mainshock (the new
phase) occurs, and in addition the statistical properties of
its fluctuations resemble those in other non-equilibrium
critical systems and in equilibrium critical phenomena.
In a seismic catalog comprising a number of events, the
procedure to construct the probability density function
(pdf) P (κ1) vs. κ1 is briefly the following: Starting from
the first EQ, we calculate the κ1 values taking natural
time windows of length from 6 to 40 consecutive events
(including the first one). We then proceed to the second
EQ, and repeat the calculation of κ1 and so on. Thus,
after sliding event by event through the whole earthquake
catalog, the calculated κ1 values enable the construction
of the pdf P (κ1).
The properties of the P (κ1) vs. κ1 curve for the long-
term seismicity has been studied in refs. [20,31] after
constructing this pdf by means of the procedure described
above. In particular, calculating the κ1 value by means of
a natural time window of length 6 to 40 consecutive events
sliding through either the original earthquake catalog or
a shuffled one, in ref. [31] the following results for the
SCEC catalog as well as for the Japanese Meteorological
Agency earthquake catalogue (Japan) were obtained: In
both catalogs, the κ1,p values, at which their pdf P (κ1)
maximize, are found to be κ1,p ≈ 0.066 for the original
data, while κ1,p ≈ 0.064 for the surrogate data. Both these
κ1,p values differ markedly from the value κu = 1/12 of the
“uniform” distribution.
In addition, in ref. [20] the order parameter fluctua-

tions relative to the standard deviation of its distribution
were studied. In particular, the scaled distribution P (y)≡
σ(κ1)P (κ1) was plotted vs. y≡ (µ(κ1)−κ1)/σ(κ1), where
µ(κ1) and σ(κ1) refer to the mean value and the standard
deviation of κ1. It was found —without making use of
any adjustable parameter— that the scaled distributions
of different seismic areas (as well as that of the world-
wide seismicity) fall on the same curve (universal). Finally,
a similarity of fluctuations in correlated systems includ-
ing seismicity has been emerged in the following sense:
Bramwell et al. [32] in an experiment of a closed turbulent

flow found that a normalized form of the probability distri-
bution function of the power fluctuations has the same
functional form as that of the magnetization (M) of the
finite-size 2D (two-dimensional) XY equilibrium model in
the critical region below the Kosterlitz-Thouless transition
temperature (magnetic ordering is then described by the
order parameter M). Their “normalized” form of the pdf,
denoted by P (m), is defined by introducing the reduced
magnetization m= (M−〈M〉)/σ, where 〈M〉 denotes the
mean and σ the standard deviation. For both systems,
Bramwell et al. [32] found that while the high end (m> 0)
of the distribution has a Gaussian shape the asymptote of
which was later clarified [33] to have a double exponential
form, a distinctive exponential tail appears towards the
low end (m< 0) of the distribution. The latter tail here-
after simply called “exponential tail” is of prime interest,
because such a tail shows that the probability for a rare
fluctuation, e.g., of greater than six standard deviations
from the mean, is almost five orders of magnitude higher
than in the Gaussian case. Subsequent independent simu-
lations [33–37] showed that a variety of highly correlated
(non-equilibrium as well as equilibrium) systems, under
certain conditions, exhibit approximately this “exponen-
tial tail”. Upon introducing [20] the order parameter κ1
for the case of EQs and analyzing in natural time the seis-
micity, it was found that the aforementioned “universal”
curve for the long term seismicity exhibits an “exponential
tail” similar to that observed in certain non-equilibrium
systems (e.g., 3D turbulent flow) as well as in several equi-
librium critical phenomena (e.g., 2D Ising, 3D Ising, 2D
XY).

Results. – There are three main goals in our study. We
start with the first one which is focused on the feature of
the probability density function of the order parameter
before mainshocks. In particular, we study here what
happened before the three mainshocks reported by SCEC
during the period 1979–2003 that occurred within the
area N3732W

122
114 : The Landers EQ on 28 June 1992 with

an epicenter at 34.19 ◦N 116.46 ◦W, the Northridge EQ
on 17 January 1994 at 34.23 ◦N 118.55 ◦W and the Hector
Mine EQ on 16 October 1999 at 34.60 ◦N 116.34 ◦W. In
a previous attempt [38], we studied the results of the
natural time analysis of excerpts of the SCEC catalog with
M � 2.0 comprising W = 5000, 3000 and 1000 EQs before
Landers and Hector Mine EQ. We observed that in the
case of Landers EQ, for example, forW = 1000 EQs before
this mainshock, a significant bimodal feature appears in
the P (κ1) vs. κ1 plot. This finding which emerged from
natural time analysis alone, is of profound importance
since it is reminiscent of the bimodal feature observed in
the pdf of the order parameter when approaching (from
below) Tc in equilibrium critical phenomena as reported
in ref. [31]. To further elucidate this finding, we extend
here our study to smaller W values, i.e., W = 500, W =
300 and W = 100 EQs before the mainshocks. The pdfs
P (κ1) vs. κ1 obtained after considering all events with
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Fig. 1: (Color online) The probability density function P (κ1) vs. κ1 for SCEC with M � 2.0 within N3732W 122
114 for the following

W values:W=10000 (red pluses), 7000 (green crosses), 5000 (blue asterisks), 2000 (magenta open squares), 1000 (cyan squares),
500 (yellow circles), 300 (black solid circles) and 100 (orange triangles) before the following mainshocks: (a) Landers,
(b) Northridge and (c) Hector Mine. In panel (d), the scaled distributions just before these three mainshocks, i.e., for W = 100,
are depicted. The thick straight line corresponds to an “exponential tail” with slope 1.55.

M � 2.0 reported by SCEC within the area N3732W 122114 are
shown in figs. 1(a), (b), (c) for W=10000, 7000, 5000,
2000, 1000, 500, 300 and 100 events before the Landers,
Northridge and Hector Mine mainshocks, respectively.
A detailed inspection of these figures sheds more light
on the changes in the feature of the P (κ1) curve upon
decreasing W from 10000 down to 100 events before the
corresponding mainshock. Let us consider for example
Landers mainshock: At W=10000 the curve is practically
unimodal since there exists a main peak of amplitude
around 13.4 at a κ1 value close to 0.066 and a weaker
peak of amplitude around 6.0 at an appreciably smaller
κ1 value close to κ1 ≈ 0. As W decreases from W=10000
toW = 1000, the part of the P (κ1) curve at smaller values
around κ1 ≈ 0 becomes higher for smaller W , reaching
the largest amplitude around 12.0 at W = 1000 which is
more or less comparable with the corresponding amplitude
(around 13.2 or so) of the initial main peak at κ1 ≈ 0.066.
This is why the P (κ1) curve could then be termed bimodal.
In other words, upon decreasing the W value from W =
10000 toW = 1000, the P (κ1) curve is initially practically
unimodal and gradually becomes bimodal, thus confirming
our earlier finding [38]. Upon focusing on shorterW values,
however, the opposite trend is observed. In particular:
a) Concerning the Landers mainshock, by comparing

the P (κ1) curves for W = 1000, W = 500, W = 300 and
W = 100, we see that the aforementioned bimodal curve
for W=1000 gradually changes, and finally returns prac-
tically to a unimodal feature for W = 100. The amplitude

of its main peak forW = 100 is now appreciably enhanced
(reaching a value around 16.8 compared to the value of
around 13.4 at W = 10000) being located at a κ1 value
around κ1 ≈ 0.052, which is markedly different than the
initial main peak located at κ1 ≈ 0.066 for W = 10000.
b) Concerning the Northridge mainshock: ForW=10000

the P (κ1) curve is unimodal (in a similar sense to that
described above for the Landers case) maximizing at
around κ1 ≈ 0.07 with amplitude 14.0 and then gradually
becomes bimodal for W = 500, where the two peaks have
comparable amplitudes, i.e., around 12.4 at the larger κ1
value ≈ 0.068 and an amplitude of around 12.5 at a smaller
κ1 value of around κ1 ≈ 0.018. For shorter W values,
i.e., W = 100, the P (κ1) curve returns to a unimodal
feature having a prominent peak with enhanced amplitude
(reaching around 15.7 compared to the value around 14.0
forW = 10000) being located at κ1 ≈ 0.055, which is again
markedly different than the initial main peak at κ1 ≈ 0.07
for W = 10000.
c) Concerning the Hector Mine mainshock: Upon

decreasing the W value from W = 10000 to around
W = 2000 the change of the feature of the P (κ1) curve
is not significant. For shorter W values, however, by
comparing for example the case for W = 1000 with that
for W = 300, the change becomes remarkable. At the
latter case, i.e., W = 300, the feature of P (κ1) could be
characterized as bimodal since its amplitude at the larger
κ1 value (≈ 0.065) is around 12.2 and at the smaller κ1
value (≈ 0) the amplitude is around 9.8. This “bimodal”
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feature, however, returns to a unimodal feature for
W=100 having a prominent peak with enhanced ampli-
tude around 16.3 (compared to the amplitude of around
12.1 for W=10000) at κ1 ≈ 0.068.
The aforementioned changes observed in the feature of

the P (κ1) curve upon decreasing the W value, could be
summarized as follows: Well before the mainshock, i.e.,
for large W values, the P (κ1) curve is almost unimodal
in the sense that its main part maximizes at a κ1 value
around κ1 = 0.066. This main part lowers only slightly
upon decreasing the W value, but another part of the
curve develops maximizing at a smaller κ1 value close to
κ1 ≈ 0, reaching —for W values around a few hundreds to
one thousand— a height comparable to that of the initial
main part, thus the P (κ1) curve becomes almost bimodal.
Finally, for even shorter W values, i.e., W = 100 (mean-
ing that the mainshock is imminent) the curve regains its
unimodal feature, which, however, is drastically different
than the initial one having a significantly enhanced height
and a different shape compared to that of the P (κ1) curve
well before the mainshock. (Note that all the scaled distri-
butions observed forW = 100 before the three mainshocks
exhibit a common feature that can be visualized in fig. 1(d)
which will be further discussed below.) Thus, in short, we
found that upon approaching a mainshock the feature of
the pdf P (κ1) vs. κ1 exhibits remarkable changes.
To quantify these changes, which constitutes the second

goal of our study, we consider the variability β of κ1,
defined by the ratio [38]

β ≡ σ(κ1)/µ(κ1). (4)

The aforementioned appearance of the bimodal feature
reflects that upon approaching the mainshock with the
number W of the earthquakes before mainshock decreas-
ing, the variability of κ1 should increase. In other words,
this means that upon considering various natural time
window lengths ending at a given mainshock, we must
observe a considerable increase in the fluctuations of κ1
before the mainshock.
To investigate this point, we plot in fig. 2 the values

of the variability of κ1 vs. the conventional time. These
values have been deduced from excerpts of the SCEC
catalog with M � 2.0 comprising W earthquakes before
each of the aforementioned mainshocks, i.e., Landers (red
circles), Northridge (green circles) and Hector Mine (blue
circles). We clarify that the data of these mainshocks
themselves were not included into the calculation. In
this figure, the points are calculated at every hundred W
interval and the W values for the closest points to each
mainshock are 100. To better visualize what happened
before these mainshocks, we plot in figs. 3(a), (b), (c)
excerpts of fig. 2 but in expanded time scale. An inspection
of fig. 2 shows that the variability of κ1 well before
these mainshocks exhibited small changes lying more or
less on the same level, but it markedly changes upon
approaching the mainshock. An almost similar behavior
for the variability of κ1 is observed before all these three
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Fig. 2: (Color online) The values of the variability of κ1
plotted vs. the conventional time (UT). These values have
been deduced from excerpts of the SCEC catalog comprising
W earthquakes with M � 2.0 within N3732W 122

114 before each of
the three mainshocks Landers (red), Northridge (green) and
Hector Mine (blue). The points are calculated at every hundred
W interval and the W values for the closest points to the
mainshock are 100. The EQs are depicted with black bars and
their magnitudes are shown in the right scale.

mainshocks, as follows: An increase in the κ1 variability
has been clearly observed before the mainshocks (see
fig. 3), i.e., on 1 May 1992 before Landers, on 24 November
1993 before Northridge, and on 29 August 1999 before
Hector Mine, followed by a decrease before the mainshock
occurrence. This behavior may be understood from a
further inspection of the pdfs P (κ1) vs. κ1 in fig. 1
in the following context: Well before all these three
mainshocks, the main part of their P (κ1) curves for
large W values, e.g., W = 5000 to around 2000, is almost
unimodal maximizing at almost the same κ1 value, i.e.,
κ1 ≈ 0.066. Upon decreasing W to a value around some
hundred events the P (κ1) curves become bimodal, thus
reflecting an increase of the κ1 variability. At even shorter
W values, however, e.g.,W = 100, the P (κ1) curves regain
practically a unimodal feature, thus causing a decrease in
the κ1 variability.
Finally, we draw attention to an important finding,

which is the third goal of our study, that emerges when
studying just before the occurrence of the mainshocks, i.e.,
for W = 100, the order parameter fluctuations relative to
the standard deviation of their distribution. In particular,
in fig. 1(d), we plotted the scaled distribution P (y) vs. y≡
(µ(κ1)−κ1)/σ(κ1), that correspond to W = 100 depicted
by orange triangles in figs. 1(a), (b), (c) just before the
occurrence of the three mainshocks. An inspection of the
three scaled distributions in fig. 1(d) for Landers (red
pluses), Northridge (green crosses) and Hector Mine (blue
asterisks), reveals that they share a common “exponential
tail” which is of chief importance for the reasons explained
above. It extends over two orders of magnitude with a
slope ≈ 1.55 (see fig. 1(d)) which is very close to the

39002-p4



Remarkable changes in the order parameter before mainshocks

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

01 Sep 
 1991

01 Oct 
 1991

01 Nov 
 1991

01 Dec 
 1991

01 Jan 
 1992

01 Feb 
 1992

01 Mar 
 1992

01 Apr 
 1992

01 May 
 1992

01 Jun 
 1992

01 Jul 
 1992

 6.6

 6.8

 7

 7.2

 7.4

V
ar

ia
bi

lit
y 

of
 κ

1

M
(S

C
E

C
)

M(SCEC)≥ 2.0 
Before Landers EQ

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

01 Jan 
 1999

01 Feb 
 1999

01 Mar 
 1999

01 Apr 
 1999

01 May 
 1999

01 Jun 
 1999

01 Jul 
 1999

01 Aug 
 1999

01 Sep 
 1999

01 Oct 
 1999

 6.6

 6.8

 7

 7.2

 7.4

V
ar

ia
bi

lit
y 

of
 κ

1

M
(S

C
E

C
)

M(SCEC)≥ 2.0 
Before Hector Mine EQ

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

01 May 
 1993

01 Jun 
 1993

01 Jul 
 1993

01 Aug 
 1993

01 Sep 
 1993

01 Oct 
 1993

01 Nov 
 1993

01 Dec 
 1993

01 Jan 
 1994

 6.6

 6.8

 7

 7.2

 7.4

V
ar

ia
bi

lit
y 

of
 κ

1

M
(S

C
E

C
)

M(SCEC)≥ 2.0 
Before Northridge EQ

(a)

(b)

(c)

1 May 1992

24 November 1993

29 August 1999

Fig. 3: (Color online) Excerpts of fig. 2 in an expanded time
scale showing what happened before the following mainshocks:
(a) Landers (red), (b) Northridge (green) and (c) Hector Mine
(blue). The vertical bar (black) shows the occurrence of the
corresponding mainshock.

effective slope α= 1.56867 . . . found in ref. [33], see their
fig. 6, for the “exponential tail” in the aforementioned
study of critical systems. In addition, we note that the
collapse of the three cases of fig. 1(d) practically on the
same curve, is strikingly reminiscent of the one earlier
found in the analysis of non-stationary biological signals
including heart rate [39], locomotor activity [40] etc.

Discussion and conclusions. – The results described
in the previous section showed that the probability distri-
bution of the order parameter κ1 of seismicity exhibits
remarkable changes (see fig. 1) when approaching a main-
shock. This was identified, as mentioned, upon comparing
various natural time window lengths ending at a given
mainshock and revealed that the fluctuations of κ1 show a
considerable increase well before the mainshock (see figs. 2
and 3). In a previous paper [41], we studied the comple-
mentary case [26], i.e., when considering a natural time
window of fixed length sliding through the seismic cata-
log, and found the following: When this length comprises a
number of consecutive events that would occur in a period
of the order of a few months —which is just the aver-
age lead time of the precursory Seismic Electric Signal
(SES) activities [42,43]— the order parameter fluctuations
exhibit a clearly observable minimum before the main-
shock. Hence, the approach of the latter is characterized
by two distinct features of the order parameter fluctua-
tions, the combination of which may be helpful in identify-
ing an impending mainshock. To further shed light on the
origin of the minimum, we employed [44] Detrended Fluc-
tuation Analysis (DFA) [45], which has become the stan-
dard method when studying long-range correlated time
series and can also be applied to real world non-stationary
signals [46–48] (for recent applications of DFA, see, for
example, refs. [49,50]), in order to investigate temporal
correlations in the earthquake magnitude time series at
the same natural time window scale as the one mentioned
above. Quite interestingly, we found [44] that the mini-
mum of fluctuations of κ1 is accompanied by a minimum
of the DFA exponent 1 to 5 months before the mainshocks
investigated in California.
Finally, we clarify that the present findings refer to the

complex behavior of seismicity in a wide area N3732W
122
114 , as

mentioned. The local dynamical behavior is captured by
the value of κ1 itself as follows [26]: Upon the appearance
of a SES activity, we start the calculation of κ1 of
the seismicity in the candidate epicentral area (which is
determined on the basis of SES properties [42]) and the
mainshock occurs in a few days to one week after the κ1
value becomes approximately 0.070.
In conclusion, remarkable changes in the feature of the

probability distribution of the order parameter of seis-
micity are identified well before the occurrence of the
three major mainshocks reported in the Southern Cali-
fornia Earthquake Catalog during the period 1979–2003,
i.e., Landers in 1992, Northridge in 1994 and Hector Mine
in 1999. These include the detection of a clearly observ-
able increase, well before each mainshock, of the order
parameter fluctuations. In addition, just before the occur-
rence of these mainshocks (i.e., 100 consecutive events of
magnitudeM � 2.0 before each of them) their scaled order
parameter probability distributions almost collapse onto
a single curve and share over two orders of magnitude a
characteristics “exponential tail” reflecting non-Gaussian
fluctuations.
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