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Abstract. Self-similarity may stem from two origins: the
process increments infinite variance and/or process memory.
The b-value of the Gutenberg-Richter law comes from the
first origin. In the frame of natural time analysis of earth-
quake data, a fall of theb-value observed before large earth-
quakes reflects an increase of the order parameter fluctua-
tions upon approaching the critical point (mainshock). The
increase of these fluctuations, however, is also influenced
from the second origin of self-similarity, i.e., temporal cor-
relations between earthquake magnitudes. This is supported
by observations and simulations of an earthquake model.

1 Introduction

A large variety of natural systems exhibit irregular and com-
plex behavior which at first look seems to be erratic, but in
fact possesses scale-invariant structure, for example seePeng
et al.(1995); Kalisky et al.(2005). A stochastic processX(t)

is called self-similar (Lamperti, 1962) with indexH > 0 if it
has the property

X(λt) d
= λH X(t) ∀ λ > 0. (1)

where the equality concerns the finite-dimensional distribu-
tions of the processX(t) on the right- and the left-hand side
of the equation (not the values of the process).

A point of crucial importance in analyzing data from com-
plex systems that exhibit scale-invariant structure, is the fol-
lowing: in several systems this nontrivial structure stems
from long-rangetemporalcorrelations; in other words, the
self-similarity originates from the process memoryonly. This
is the case for example of fractional Brownian motion. Alter-
natively, the self-similarity may solely come from the process

incrementsinfinite variance. Such an example is Lévy stable
motion (the variance of Ĺevy stable distributions is infinite
since they have heavy tails,Weron et al., 2005, thus differ-
ing greatly from the Gaussian ones). In general, however, the
self-similarity may result from both these origins (Kantel-
hardt et al., 2002), the presence of which can be in principle
identified when analyzing the complex time series in terms
of the new time domain termed natural time (Varotsos et al.,
2011b).

The evolution of seismicity is a typical example of com-
plex time series. Several traditional studies were focused on
the variation of theb-value of the Gutenberg-Richter (G-
R) law (Gutenberg and Richter, 1954), which states that the
(cumulative) number of earthquakes with magnitude greater
than (or equal to)M, N(≥ M), occurring in a specified area
and time is given by

N(≥ M) = 10a−bM , (2)

whereb is a constant, varying only slightly from region to re-
gion and the constanta gives the logarithm of the number of
earthquakes with magnitude greater than zero (Shcherbakov
et al., 2004). These studies found that theb-value decreases
before a large event, e.g., seeLi et al. (1978) (cases where
b-value increases prior to and then decreases sharply before
a large event have been also reported,Henderson and Main,
1992). Here, considering that theb-value itself solely focuses
on the one origin of self-similarity, and in particular the pro-
cess increments infinite variance, we show that, when em-
ploying natural time analysis, theb-value decrease before
large earthquakes reflects an increase of the fluctuations of
the order parameter of seismicity when approaching the criti-
cal point (mainshock, see below). The whole precursory vari-
ation of the order parameter fluctuations, however, is more
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complex since it capturesbothorigins. Temporal correlations
between earthquake magnitudesalsoplay an important role
in this precursory variation, thus leading to additional results
compared to the ones obtained when restricting ourselves to
traditional analysis ofb-value alone.

2 Natural time analysis – identification of the two
origins of self-similarity – the case of seismic
electric signals activities

For a time series comprisingN events, we define (Varot-
sos et al., 2001) the natural timeχk for the occurrence
of the k-th event (of energyQk) by χk = k/N . We then
study the evolution of the pair (χk,Qk) or (χk,pk), where
pk = Qk/

∑N
n=1Qn is the normalized energy released dur-

ing thek-th event. The quantity8(ω) is defined by8(ω) =∑N
k=1pk exp(iωχk), whereω stands for the natural angu-

lar frequency, and then evaluate the real function5(ω) =

|8(ω)|2 in the low frequency limit. By considering the Tay-
lor expansion5(ω) = 1−κ1ω

2
+κ2ω

4
+. . . , we find that the

approach of a dynamical system to criticality (see Chapter 8
of Varotsos et al., 2011b) is identified by means ofκ1, i.e.,

κ1 = 〈χ2
〉 − 〈χ〉

2
=

N∑
k=1

pkχ
2
k −

(
N∑

k=1

pkχk

)2

, (3)

which is the variance (Varotsos et al., 2001, 2005, 2011b)
of natural time weighted forpk. WhenQk is independent
and identically distributed positive random variables, we ob-
tain the “uniform” (u) distribution ofpk, as it was defined
by Varotsos et al.(2003) (see also p. 122 ofVarotsos et al.,
2011b). In this case,all pk vary around their mean value 1/N

(cf. since
∑N

n=1pn = 1) and the quantityκ1 results (Varotsos
et al., 2003) in κu = 1/12 for largeN .

In general, in a complex time series, in order to identify
the two origins of self-similarity by means of natural time
analysis, we focus on the expectation valueE(κ1) of the vari-
anceκ1 of natural time when sliding a natural time window
of lengthl through a time series ofQk > 0, k = 1,2, . . .N .

If self-similarity exclusively results from the process
memory, theE(κ1)-value shouldchangeto κu = 1/12 for the
(randomly) shuffled data. This is the case of the seismic elec-
tric signals (SES) activities (Varotsos et al., 1993), which are
series of low-frequency (≤ 1 Hz) electric signals detected a
few to several weeks (up to five months) before an earth-
quake when the stress in the focal region reaches acritical
value (and hence long range correlations develop). The crite-
ria according to which the observed electric signals are iden-
tified as SES activities have been published byVarotsos and
Lazaridou(1991): having installed a multitude of measuring
electric dipoles of various lengths and orientations, we ver-
ify that the observed electric signals are not induced by small
variations of the magnetic field of the Earth due to extra ter-
restrial sources as well as not originating from nearby man

made electrical sources. For example, the three upper chan-
nels in Fig.1b show three SES activities that preceded major
earthquakes in southern, southwestern and western Greece,
respectively, as depicted in the map of Fig.1a. For the sake
of comparison, the lowest channel shows an SES activity
recorded in northern Greece (close to Thessaloniki). In all
these four cases, the analysis of their original data lead to
κ1 ≈ 0.07 (see also below), which turns toκu = 1/12 upon
shuffling the data. On the other hand, if the self-similarity
results from process increments infinite varianceonly, E(κ1)

should be the same (but differing fromκu) for the original
and the (randomly) shuffled data. Finally, when both origins
of self-similarity are present, the relative strength of the con-
tribution of the one origin compared to that of the other can
be quantified on the basis of Eqs. (12) and (13) ofVarotsos
et al.(2006b) (see alsoVarotsos et al., 2011b).

3 Natural time analysis of seismicity – the order
parameter of seismicity

In what remains, we focus on complex time series of seis-
micity. Earthquakes exhibit scaling relations chiefly among
which is the aforementioned G-R law (Gutenberg and
Richter, 1954). For reasons of convenience, we write here-
after G-R law of Eq. (2) in the formN(≥ M) ∝ 10−bM . Con-
sidering that the seismic energyE released during an earth-
quake is related (Kanamori, 1978) to the magnitude through
E ∝ 10cM , wherec is around 1.5, the latter form turns to the
distribution,

P(E) ∝ E−γ (4)

whereγ = 1+ b/1.5. Hence,b ≈ 1 means that the exponent
γ is aroundγ = 1.6 to 1.7, see Table 2.1 ofVarotsos et al.
(2011b).

The complex correlations in time, space and magnitude
of earthquakes have been extensively studied (Corral, 2004;
Holliday et al., 2006; Eichner et al., 2007; Lippiello et al.,
2009; Lennartz et al., 2011; Teisseyre and Ǵorski, 2011). The
observed earthquake scaling laws (Turcotte, 1997) seem to
indicate the existence of phenomena closely associated with
the proximity of the system to acritical point (e.g., seeHolli-
day et al., 2006, and references therein). In the frame of natu-
ral time analysis, it has been suggested (Varotsos et al., 2005)
(see also pp. 249–254 ofVarotsos et al., 2011b) that the or-
der parameter of seismicity is the quantityκ1. Theκ1-value
itself may lead to the determination of the occurrence time
of the impending mainshock (Varotsos et al., 2001, 2006a,b,
2011b) when SES data are available. In particular, when the
κ1-value resulting from the natural time analysis of the seis-
micity subsequent to the SES recording becomes approxi-
mately equal to 0.070, the mainshock occurs within a time
window of the order of one week. This has been empirically
observed in several cases (Varotsos et al., 2001, 2006a,b) (see
also Chapter 7 ofVarotsos et al., 2011b) including the three
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Fig. 1. (color online)(a) Major earthquakes in Greece on 8 January 2006 (red, magnitudeMw = 6.7), 14 February 2008 (green,Mw = 6.9
and 6.4) and 8 June 2008 (blue,Mw = 6.4). (b) Their preceding SES activities recorded at Pirgos (PIR) measuring station located in western
Greece are shown (with the corresponding color) in the upper three channels. Earthquakes with SES activities at PIR are located in the shaded
region of(a). Furthermore, an SES activity recorded at a station in northern Greece on 13 July 2012, is depicted in the lowest channel of(b).

major earthquakes of Fig.1a that followed the SES activities
depicted in Fig.1b. An example of theκ1 dynamics after the
recording of the SES activity depicted in the third channel of
Fig. 1b until the occurrence of the magnitude 6.4 mainshock
on 8 June 2008 (blue star in Fig.1a) is given in the Appendix
(see alsoLazaridou-Varotsos, 2012). In the lack of SES data,
we have to solely rely on the fluctuations of the order param-
eter of seismicity. Along these lines, we investigated (Sarlis
et al., 2010a) the period before and after a significant main-
shock. Time series for various lengths ofW earthquakes that
occurred before or after the mainshock have been studied.
The probability distribution function (pdf)P(κ1) versusκ1
was found to exhibit a bimodal feature when approaching a
mainshock. To quantify this feature, we considered thevari-
ability of κ1, which is just the ratio

β ≡ σ(κ1)/µ(κ1), (5)

where σ(κ1) and µ(κ1) stand for the standard deviation
and the mean value ofκ1 for sliding window lengthsl =

6–40. The bimodal feature reflects that, upon approaching
the mainshock (with the numberW of the earthquakes be-
fore mainshock decreasing), the variability ofκ1 should in-
crease. This was subsequently confirmed because before
the M = 9.0 devastating Tohoku earthquake in Japan on
11 March 2011, the variability ofκ1 exhibited (Uyeda and
Varotsos, 2011; see also pp. 207–217 ofLazaridou-Varotsos,
2012; Varotsos et al., 2012) a dramatic increase.

In addition, we investigated (Varotsos et al., 2011a) the
order parameter fluctuations, but when considering a natu-
ral time window of a fixed-lengthW sliding through a seis-
mic catalog (cf. in general the results of complexity mea-
sures when consideringW = const complement (Varotsos
et al., 2011b) those deduced when taking windows of vari-
ous lengthsW in the following sense: if in the frame of the
one type of measures an ambiguity emerges in identifying
the approach to the critical point, the other type gives a very
clear answer). For earthquakes in California and Greece, we
found (Varotsos et al., 2011a) that whenW becomes com-
patible with the lead time of the SES activities (i.e., of the
order of a few months), the fluctuations exhibit a global min-
imum before the strongest mainshock that occurred during a
25- and 10-yr period, respectively.

4 Interrelation between the fluctuations of the order pa-
rameter of seismicity and theb-value of the G-R law

Let us now study the interrelation between theb-value and
the variability of κ1. In particular, we investigate the ex-
pected value ofκ1 when a natural time window length is slid-
ing through randomly shuffled power law distributed energy
bursts that obey Eq. (4). In Fig. 2, the pdfP(κ1) versusκ1 is
plotted for severalb-values, an inspection of which reveals
that: For highb-values, e.g., forb = 1.5 and 1.4, theP(κ1)

versusκ1 curve is almost unimodal maximizing at a value
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Fig. 2. (color online) The probability density functionP(κ1) versus
κ1 for several values ofb for temporally uncorrelated events obey-
ing Eq. (4). The inset depicts the variabilityβ as a function ofb (the
cross symbols refer to directly computed values, while the curve has
been drawn as a guide to the eye).

somewhat larger than 0.070, while for smallerb a second
mode emerges close toκ1 ≈ 0 which reflects that the fluctu-
ations ofκ1 are larger. The computed values of theκ1 vari-
ability as a function of theb-value are plotted in the inset
of Fig. 2b. The general feature of this curve is more or less
similar to that observed for example before Tohoku earth-
quake (Varotsos et al., 2012); quantitative agreement can-
not be demanded, however, becausetemporal correlations
between the earthquake magnitudes are also present which
influence the observed results. This is corroborated by the
following results obtained from the Olami-Feder-Christensen
(OFC) earthquake model (Olami et al., 1992). We preferred
to employ this model here, since it has been studied in de-
tail in hundreds of publications, but we clarify that there ex-
ist more recent ones, e.g., seeDieterich and Richards-Dinger
(2010) where the primary role of the fault system geometry
is emerged.

Before proceeding to the presentation of our results ob-
tained from the OFC model, we note that concerning the
correlations between magnitudes of subsequent earthquakes,
there is a diversity of views in the literature. Such correla-
tions, reported byLippiello et al. (2007, 2008), have been
later attributed (Davidsen and Green, 2011; Davidsen et al.,
2012) to catalog incompleteness. In a subsequent publica-
tion, however,Lippiello et al. (2012) made an analysis of
two California regions with different levels of catalog accu-
racy and different lower magnitude thresholds, which con-
vincingly indicated that the amplitude of correlations does
not depend on catalog incompleteness. Natural time analy-
sis of seismicity (Varotsos et al., 2006b, 2011b; Sarlis et al.,
2009, 2010b) leads to results that conform to the view ex-
pressed by Lippielo and coworkers.

The OFC model runs as follows: we assign a continuous
random variablezij ∈ (0,1) to each site of a square lattice,

which represents the local “energy”. Starting with a random
initial configuration taken from a uniform distribution in the
segment (0,1), the valuezij of all sites is simultaneously in-
creased at a uniform loading rate until a siteij reaches the
threshold valuezthres= 1 (i.e., the loading1f is such that(
zij

)
max+ 1f = 1). This site then topples which means that

zij is reset to zero and an “energy”αzij is passed to every
nearest neighbor, where the coupling parameterα can take
values from zero to 0.25 and is theonly parameter of the
model, apart from the edge lengthL of the square lattice. If
this causes a neighbor to exceed the threshold, the neighbor
topples also, and the avalanche continues until allzkl < 1.
Then the uniform loading increase resumes. The number of
topplings defines the size of an avalanche or “earthquake”
and (when it is larger than unityk increases by one) is used
as Qk in natural time analysis. Here, we use the case of
free boundary conditions (Helmstetter et al., 2004) in which
α varies locallyαij =

1
nij +K

, wherenij is the actual num-
ber of nearest neighbors of the siteij (for sites in the bulk
nij = 4, for sites at the edgesnij = 3 and for the four sites
at the cornersnij = 2) andK denotes (Helmstetter et al.,
2004) the elastic constant of the upper leaf springs mea-
sured relatively to that of the other springs between blocks in
the Burridge-Knopoff model (Burridge and Knopoff, 1967).
The OFC model is obviously non-conservative forK > 0 for
which αij < 0.25 in the bulk (for more details on the OFC
modeling see pp. 349–363 ofVarotsos et al., 2011band ref-
erences therein).

We first study whether there exists predictability in the
OFC model on the basis of theκ1 variability. In other words,
we study whether the probability for the occurrence of a
large avalanche differs from that of random chance when
the sequential order of the earlier avalanches has led to a
value of theκ1 variability that exceeds some threshold (see
below). We consider the variabilityβk which is a function
of the natural time indexk, k = 1,2, . . . ,N = 2× 106 es-
timated by analyzing in natural time for eachk the pre-
cedingW = 100 avalanches. The time increased probability
(TIP) (Keilis-Borok and Rotwain, 1990) (i.e., the time dur-
ing which there exists a high probability for the occurrence
of a large avalanche exceeding a given threshold) is turned
on whenβk > βc, whereβc is a given threshold in the pre-
diction. If the sizeQk is greater than a target avalanche size
thresholdQc, we have a successful prediction. For binary
predictions, the prediction of events becomes a classification
task with two types of errors: missing an event and giving a
false alarm. We therefore choose (Garber et al., 2009) the re-
ceiver operating characteristics (ROC) graph (Fawcett, 2006)
to depict the prediction quality. This is a plot of the hit rate
versus the false alarm rate, as a function of the total rate of
alarms, which here is tuned by the thresholdβc. Only if in
between the hit rate exceeds the false alarm rate, the pre-
dictor is useful. Random predictions generate equal hit and
alarm rate, and hence they lead to the diagonal in ROC plot.
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Fig. 3. (color online) The ROC diagram for the OFC earthquake
model discussed in the text: red (L = 256 andK = 2) and blue (L =

512 andK = 1) lines. In addition, two ROC diagrams are depicted
based on the results obtained forL = 512 andK = 1: the green
curves correspond to the case when the values ofβk were randomly
shuffled and the shuffled predictors were used, while the magenta
curves when the time series ofQk was randomly shuffled and then
βk was estimated.

Thus, only when the points lie above this diagonal the pre-
dictor is useful. As an example, the ROC graphs forL = 512
andK = 1 or L = 256 andK = 2 are shown in Fig.3 (the
rational for choosing these two cases stems from the study of
Lise and Paczuski(2001) in which it was shown that the OFC
model with free boundary conditions exhibits in these cases
– see their Fig. 4 – avalanche size distribution that agrees
with the G-R law). For every given threshold valueβc and a
target thresholdQc, we get a point in this plot, thus varying
βc we get a curve. The various curves in Fig.3 correspond
to various values ofQc = 168, . . . ,1000 increasing from the
bottom to the top. An inspection of this figure shows that
the points in each curve lie above the diagonal and the ex-
cess is higher for larger values ofQc. In order to investigate
the statistical validity of this result, we include in the same
graph the results where: (a) the values ofβk were randomly
shuffled and the shuffled predictors were used (green curves)
and (b) the time series ofQk was randomly shuffled and then
βk was estimated (magenta curves); in both cases, we obtain
curves which almost coincide with the diagonal. This clearly
demonstrates that the aforementioned excess of the results
related with the originalQk series from the diagonal comes
from the sequential order of avalanches and cannot be con-
sidered as chancy.

We now proceed to the investigation of the temporal cor-
relations between the magnitudesmk = log10(Qk)/1.5 ob-
tained from the sizesQk of the avalanches in the OFC model
preceding a large avalanche. The results can be visualized
in two examples in Fig.4, where we plot in blue the ex-
ponentaDFA of the detrended fluctuation analysis (DFA)
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Fig. 4. (color online) The exponentaDFA (blue, left scale) and the
variability β (red, right scale) versus the number of the avalanches
preceding a large avalanche,Qk = 40325 for(a) andQk = 31145
for (b), that corresponds toW = 0 for the OFC model (K = 1, L =

512).

(Peng et al., 1994) (along with the variabilityβ plotted
in red) versus the numberW of avalanches before a large
avalanche (negative x semi-axis,x = −W ). Note that DFA
has already been employed byLivina and Lenton(2007)
for monitoring temporal correlations before bifurcations. In
the upper example, Fig.4a, the value ofaDFA well before
the large avalanche, being somewhat larger than 0.5, ex-
hibits small changes but strongly increases upon approach-
ing the large avalanche, i.e., atW = 100 the value ofaDFA
becomes≈ 0.75 which shows intensifiedtemporalcorrela-
tions. In the lower example, Fig.4b, well before the large
avalanche we haveaDFA ≈ 0.6 showing long range tempo-
ral correlations, which first turn to anti-correlations upon ap-
proaching the large avalanche, e.g.,aDFA ≈ 0.43 atW = 400,
and finally become random, i.e,aDFA ≈ 0.5 at W = 100,
just before the “mainshock”. In both examples of Fig.4,
the variabilityβ rapidly increases upon approaching a large
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avalanche showing clear precursory changes in the temporal
correlations between avalanche magnitudes. A detailed sta-
tistical study of the OFC model (K = 1, L = 512), forW =

100,200, . . .1000, showed that among the 579 large (Qk >

30000) avalanches, in 30% of the cases a rapid increase ofβ

upon approaching them is observed. This is more or less con-
sistent with empirical observations since in Japan this pre-
cursory increase was observed in 8 out of 25 earthquakes (all
aboveM = 7 during 1 January 1994 to 11 March 2011 with
depths smaller than 700 km) (Varotsos et al., 2012). Con-
cerning theα-values, when studyingW = 100,200, . . .1000,
among the 579 large avalanches studied, in 76 % of the cases
theα-value was found to become smaller than 0.5 (as seen in
Fig. 4b).

5 Summary and conclusions

Traditional analyses of seismicity make use of theb-value it-
self, which focuses on the one origin of self-similarity, i.e.,
the process increments infinite variance. Here, in order to
shed light on the long standing observation that theb-value
occasionally decreases before large earthquakes, we employ
natural time analysis, which is a general procedure to ana-
lyze complex time series without the need to introduce any
assumption and/or adjustable parameter(s). Our main finding
constitutes in identifying, for the first time, that the variation
of theb-value is interconnected with the fluctuations of the
order parameterκ1 of seismicity when approaching the criti-
cal point (mainshock). In particular:

1. We show that, in general, for randomly shuffled power-
law distributed data (see Eq.4), the b-value decrease
reflects an increase of the variabilityβ of the order pa-
rameterκ1, as shown in the inset of Fig.2.

2. An experimentally observed increase of the variabilityβ

before a large earthquake, however, cannot be arbitrar-
ily attributed to theb-value decrease alone, mentioned
in point 1, because the other origin of self-similarity,
i.e., temporal correlations between earthquake magni-
tudes, may also be present and influence the effect ob-
served. To quantify the relative strength of the contri-
bution of the one origin of self-similarity compared to
that of the other, the procedure developed inSarlis et al.
(2009) (based on Eqs. (12) and (13) ofVarotsos et al.,
2006b) must be employed by analyzing in natural time
the data available in each case.

3. Although it cannot capture all the characteristics of
earthquake dynamics, the OFC model was employed
here to investigate the existence of correlations be-
tween the magnitudes obtained from the sizes of the
avalanches preceding a large avalanche. We find that
this holds beyond chance arising from the sequential
order of avalanches. In other words, we show that the

probability for the occurrence of a large avalanche ex-
ceeds that of random chance when the sequential or-
der of the earlier avalanches has resulted in a rela-
tively high value of the variabilityβ. In addition, exam-
ples are presented in which the variabilityβ increases
upon approaching a large avalanche showing precursory
changes in the temporal correlations between avalanche
magnitudes. In the specific OFC model studied, we
found that among the largest 579 avalanches, in 30 %
of the cases a rapidβ increase was observed until just
before the occurrence of a large avalanche.

Appendix A

A tentative procedure to identify the occurrence time of
an impending mainshock: the case of theMw = 6.4
earthquake on 8 June 2008

Upon the recording of an SES activity, one can estimate
(through the procedure explained in Chapter 1 ofVarotsos
et al., 2011b) an area A within which the impending main
shock is expected to occur. We then analyze in natural time
the subsequent seismicity (as it evolves event by event) inall
the possible subareas of A. Theκ1-values of all these subar-
eas and the largest area A, are treated onequalfooting and al-
low the construction of the probability distribution Prob(κ1).
This way Prob(κ1) versusκ1 is obtained until it maximizes at
κ1 ≈ 0.070 exhibiting also magnitude threshold invariance.
This, according to our observations to date, usually occurs
a few days to around one week or sobeforethe mainshock,
thus it gives the possibility to estimate the occurrence time of
major earthquakes. Example of this procedure will now be
presented for the earthquake (EQ) of magnitudeMw = 6.4
that occurred in Greece on 8 June 2008.

This major EQ was preceded by the SES activity that
lasted from 29 February to 2 March 2008, which is shown
in the third channel of Fig. 1b. After subtracting the si-
nusoidal background noise, termed magnetotelluric (arising
from electric field variations on the Earth’s surface induced
by the frequent variations of the Earth’s magnetic field) with
the procedure described inVarotsos et al.(2009), the signal
was analyzed in natural time and classified as an SES activ-
ity.

The investigation of the subsequent seismicity was
conducted at first (seeSarlis et al., 2008a) in the area
A: N38.6

37.0 E22.0
20.0, which is somewhat smaller than the PIR

selectivity map (i.e., the map containing the seismic areas
which emit precursory SES recorded at PIR measuring
station) known at that time. This was in an attempt to avoid
as much as possible the influence of aftershocks of the
Mw = 6.9 EQ at 36.5◦ N 21.8◦ E on 14 February 2008. This
policy was considered justified, based on the notion that
a criticality approach would take place in proper subareas
simultaneously. At the same time, an attempt was also made
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Fig. A1. The probability Prob(κ1) versusκ1 of the seismicity
with magnitude thresholdMthres= 3.9 (a), Mthres= 4.0 (b) and
Mthres= 4.1 (c) within the shaded area shown in Fig. 1a subse-
quent to the SES activity recorded at PIR during 29 February to 2
March 2008, see the third channel in Fig. 1b. The vertical arrows
mark the maxima of Prob(κ1) versusκ1 atκ1 ≈ 0.070 that occurred
at 23:26 UT on 27 May 2008 (practically 28 May) and has been fol-
lowed by theMw = 6.4 on 8 June 2008. Taken fromSarlis et al.
(2008c).

to extend the area A to include the shaded area shown in
Fig. 1a. This extension was based on the recent – at that time
– pieces of information for PIR selectivity map, including
the occurrences of the aforementionedMw = 6.9 EQ on
14 February 2008 associated with the SES activity depicted
in the second channel of Fig. 1b and theMw = 6.7 EQ
at 36.3◦ N 23.2◦ E on 8 January 2006 following the SES
activity of the upper channel of the same figure (details on
the latter event have been described inVarotsos, 2006). In
the study for the extended PIR selectivity map area (shaded
region in Fig. 1a), we raised the magnitude threshold to

Mthres= 3.9, 4.0 and 4.1 (local magnitudesML), because
the extended area along the Hellenic Arc was highly seismic
and there were too many (more than half a thousand) events
to handle forMthres= 3.2. This study showed that upon
the occurrence of aMs(ATH) = 5.1 EQ (whereMs(ATH)
stands for theMs magnitude announced by the Athens
Observatory, ATH,Ms(ATH) = ML +0.5) at 35.5◦ N 22.4◦ E
at 23:26 UT on 27 May (practically 28 May) 2008, the
probability Prob(κ1) exhibited a pronounced maximum
at κ1 ≈ 0.070 marked by a vertical arrow in Fig.A1a
drawn for Mthres= 3.9. Similar maxima atκ1 ≈ 0.070
appeared simultaneously forMthres= 4.0 andMthres= 4.1
(see Fig.A1b and c, respectively), thus indicating that the
critical point has been approached. This was reported on
29 May 2008 inSarlis et al.(2008c) (see alsoSarlis et al.,
2008b; Lazaridou-Varotsos, 2012). Actually, almost 10 days
later, i.e., at 12:25 UT on 8 June 2008, aMw = 6.4 EQ
occurred at 38.0◦ N 21.5◦ E, i.e., inside the shaded area
shown in Fig. 1a, which caused extensive damage.
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