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Abstract – We first investigate in natural time the numerical simulations of a simple deterministic
self-organized critical system introduced to describe avalanches in stick-slip phenomena. It is
one-dimensional and belongs to the same universality class as the train model for earthquakes
introduced by Burridge and Knopoff. We show that the variance κ1 = 〈χ

2〉− 〈χ〉2 of natural time
χ, becomes approximately equal to 0.070 when the system approaches the critical state. Next,
we analyze in natural time the small earthquakes subsequent to the low-frequency magnetic-field
precursor observed near the epicenter of the Ms7.1 Loma Prieta earthquake in 1989. We find that
almost five days before the mainshock, the condition κ1 ≈ 0.070 was reached.

Copyright c© EPLA, 2010

The grand challenge to predict when earthquakes
(EQs) may occur is extremely difficult. EQs exhibit [1,2]
complex correlations in time, space and magnitude, on
which several recent studies (e.g., [3–7]) have been focused,
but there is not yet [8] a comprehensive explanation of the
mechanisms giving rise to their complex phenomenology.
However, it is widely accepted [1,9–15] that the observed
earthquake scaling laws indicate the existence of pheno-
mena closely associated with the proximity of the
system to a critical point. Within the frame of this
widespread belief, an order parameter of seismicity
has been suggested [16] on the basis of natural time
(see below). Studying the probability density function
of this parameter, it was demonstrated [16] that the
seismicities in various regions (as well as the worldwide
seismicity) give rise to probability density function curves
that collapse on the same master (universal) curve. In
addition, the study of the order parameter fluctuations,
relative to the standard deviation of its distribution,
led to the conclusion [16] that the scaled distributions
collapse on the same curve, which exhibits features
similar to those in several equilibrium and nonequilibrium
critical phenomena [17,18] as well as in non-stationary
biological signals including heart rate [19], locomotor
activity [20] etc.

(a)E-mail: pvaro@otenet.gr

Very recently [21] we made use of the aforementioned
order parameter of seismicity, hereafter labelled κ1 (see
below), together with the detrended fluctuation analysis
of the magnitude time series [6] to investigate the period
before and after a significant mainshock. The study was
focused on two significant EQs that occurred in California
in 1992 and 1999, i.e., the Landers and the Hector Mine
earhquakes. Magnitude time series for various lengths
of W EQs that occurred before or after the mainshock
have been considered. The natural-time analysis of these
time series, revealed that “foreshocks” exhibit a behavior
characteristic of systems close to their critical point: i.e.,
the probability distribution function P (κ1) vs. κ1 exhibits
a bimodal feature. In an attempt to quantify this feature,
we considered a measure of the variability of κ1, which
was then used as decision variable for the “prediction” of
the occurrence of a large earthquake in the next time step
based solely on the magnitudes of previous earthquakes.
The results were found to convincingly outperform
chance. However, they were not spectacular and this was
attributed to the following possibility: When using a
constant W , it may not correspond to the time at which
the focal area of the impending mainshock enters into the
critical regime which may be captured however by the
detection of precursory electric signals, termed Seismic
Electric Signals (SES, see below) if such measure-
ments are available. Here, we investigate this challenging
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possibility. In particular, we analyze in natural time
the small events (earthquakes) that occur after a SES
detection and precede a mainshock. This will be investi-
gated here for the 18 October 1989 Ms7.1 Loma Prieta
earthquake (California) for which precursory SES like
changes have been reported, as it will be explained
below. Before proceeding, however, to this analysis of
real seismic data, we also investigate what happens with
the aforementioned order parameter of seismicity in a
well-known earthquake model.
An EQ is a stick-slip dynamical instability of a pre-

existing fault driven by the motion of a tectonic plate
[2,22]. A relatively simple dynamical model that contains
much of the essential physics of earthquake faults is
the so-called spring-block model originally proposed [9]
by Burridge and Knopoff. It consists of an assembly of
blocks, each of which is connected via elastic springs
to the nearest-neighboring blocks. The blocks are also
connected to the driving plate by elastic springs and
rest on a surface with a velocity-weakening stick-slip
friction force (the friction force decreases as the velocity
is increased). When the force acting on a block over-
comes the static friction with the surface, the block
slips. Then a redistribution of forces takes place in the
neighbors that eventually trigger new displacements.
An earthquake event is defined as a cluster of blocks
that move (slip) due to the initial slip of a single block.
A numerical study in one dimension was already made by
Burridge and Knopoff [9] and later Carlson, Langer and
others [10,23] proceeded to more extensive studies of the
one-dimensional and two-dimensional Burridge-Knopoff
models focusing on the magnitude distribution of earth-
quake events. Recently, spatiotemporal correlations of
the two-dimensional Burridge-Knopoff model have been
studied [24] by considering also long-range inter-block
interactions. We shall show that, if the events in the
Burridge-Knopoff model are analyzed in terms of a
new time domain, termed natural time χ, proposed
recently [25], the recognition [25–29] of the system
entering the critical stage can be achieved. We clarify
that natural time has been shown [30], upon employ-
ing the Wigner function and the generalized entropic
measure proposed by Tsallis [31], to be optimal in the
time-frequency space which conforms to the desire to
reduce uncertainty and extract signal information as
much as possible.
In analyzing a time series comprising N events, we

define an index for the occurrence of the k-th event by
χk = k/N , which we term natural time. We then study
the evolution of the pair (χk, Qk), where Qk stands for the
energy of the k-th event, by using the normalized power
spectrum

Π(ω) = |Φ(ω)|
2
, (1)

defined by

Φ(ω) =

N
∑

k=1

pk exp

(

iω
k

N

)

, (2)

where pk =Qk/
∑

N

n=1Qn represents the normalized size
of the k-th event and ω stands for the angular natural
frequency. The quantities pk can be considered as proba-
bilities since they are positive and additive to unity.
A quantity κ1 is derived by the Taylor expansion Π(ω) =
1−κ1ω

2+κ2ω
4+ · · ·, where

κ1 =
N
∑

k=1

pkχ
2
k
−

(

N
∑

k=1

pkχk

)

≡ 〈χ2〉− 〈χ〉2. (3)

This quantity, which is formally the variance of natural
time χk weighted for pk, quantifying the dispersion of
the most prominent events within the “rescaled” inter-
val (0, 1], varies upon the occurrence of any new event. It
has been demonstrated that this analysis enables recogni-
tion of the complex dynamic system under study entering
the critical stage [25–29], namely this occurs when the
variance κ1 becomes approximately equal to 0.070. Origi-
nally the condition κ1 = 0.070 for the approach to critical-
ity was theoretically derived [25] for the Seismic Electric
Signals (SES), which are transient low-frequency (� 1Hz)
electric signals that have been repeatedly observed before
EQs [28]. SES are emitted from earthquake focal zones
when the seismogenic stress reaches some critical level [28]
(see below). We will investigate here whether the same
condition κ1 = 0.070 holds for a simple version of the
Burridge-Knopoff model.
In the Burridge-Knopoff model studied by Carlson,

Langer and others, each block is connected, as mentioned
above, to the driving element. To model the dynamics
of earthquakes, Burridge and Knopoff in their original
work [9] also studied the case of a chain of blocks (situated
on a rough surface with friction) connected by elastic
springs and pulled only at one end with a constant
small velocity. The dynamics of the model is as follows:
All the blocks are initially at rest. As the driver pulls
the first block, the latter remains stuck until the elastic
force overcomes the static friction. When this occurs,
the first block will move a little. Such small events (or
earthquakes) will continue and increase the elastic force
on the second block. When the elastic force on the second
block overcomes the friction force, an event involving the
two blocks will occur. The dynamics continues with events
involving three, four, five or all the blocks in the system.
This model is usually called the “train model” since it
has some similarity with a train, where the driving force
is applied only at one end of the chain (e.g., [32]). The
dynamics here is governed by coupled ordinary differential
equations which makes its study very time consuming. To
make this system more amenable to computer simulations,
de Sousa Vieira [33] introduced a continuous cellular
automaton that exhibits Self-Organized Criticality (SOC),
pioneered by Bak et al. [34], and belongs to the same
universality class as the train model. This deterministic
one-dimensional model for the avalanches in stick-slip
phenomena, which is very close to the case of an array
of connected pendulums first discussed by Bak et al. [34],
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is defined as follows (see [33,35,36]): Consider a one-
dimensional system, where a continuous (force) variable
fl � 0 is associated with each site l, l= 1, 2, . . . , L. Initially
all fl have the same value f0 which lies below a threshold
fth. One can set fth = 1.0 without loss of generality. The
basic time step consists of varying the force on the first
site according to f1 = fth+ δf ; the system then relaxes
with a conservative redistribution of the forces at the site
fl � fth (toppling site) and its nearest neighbors according
to fl =Ψ(fl− fth) and fl±1 = fl±1+Δf/2, where Δf is
the change of force at the overcritical site and Ψ(x) a
periodic nonlinear function. This condition mimics the
redistribution of forces when the block l is displaced
(stick-slips) by Δxl during an “earthquake” in the train
model [33]. The relaxation continues until all sites have
fl < fth for all l . The size of the ‘earthquake’ corresponds
to the number of topplings, s, required for the system
to relax, and is considered here as the appropriate value
of Qk in natural time. Then, the driving force at the
first site sets in again. This is complemented by open
boundary conditions; i.e., the force is “lost” at l= 1 and
l=L. The nonlinear periodic function used here (which
means that, when considering that the force supposed
here mimics the net effect of the two forces in the
train model, i.e., the elastic and the friction forces, the
periodicity of the elastic force dominates over the form of
the friction force) is similar to the one used in refs. [33,35],
i.e., a sawtooth function Ψ(x) = 1− ax+ [ax], where [. . .]
denotes the integer part of ax and a is a number. It was
shown [33] that such a system evolves to a SOC state
where the avalanche distributions are scale free limited
only by the overall system size.
In fig. 1, we present the results obtained from this

model using the same parameters as in ref. [35], i.e.,
L= 1024, a= 4, f0 = 0.87 and δf = 0.1. In fig. 1(a), the
number of topplings s is plotted in red vs. the avalanche
number i for the first 160000 avalanches which shows
in fact how these series of avalanches can be read in
natural time. The blue curve in fig. 1(a), shows how
the quantity κ1 evolves avalanche by avalanche. There,
we also plot in green the total force X(i) of the system

after each avalanche, computed from X(i) =
∑

L

l=1 fl(i),
whose stabilization provides a measure of the approach
to SOC [35]. An inspection of fig. 1(a) reveals that
(after the transient and hence) when the system enters
into the critical state, the κ1 value fluctuates around 0.070
(designated by the thick blue line). The latter becomes
clear in fig. 1(b), which reproduces fig. 1(a) but in an
enlarged time scale for the first 40000 avalanches and
shows that for i > 5000 (i.e., just when the system enters
into the SOC state) κ1 scatters around 0.070. This behav-
ior has been verified for a wide range of parameters L,
a, f0 and δf just before the SOC state is reached. Note
that once the statistically steady SOC state is established,
the κ1 value gradually increases reaching the correspond-
ing value of κu = 1/12 of a “uniform” distribution (see
ref. [26]). (This could be seen, for example, in fig. 1(a)
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Fig. 1: (Color online) Results of the model discussed in the
text for the first, i= 1 to i= 160000 (a), or to i= 40000 (b),
avalanches obtained by numerical modelling as read in natural-
time domain, for L= 1024, a= 4, f0 = 0.87 and δf = 0.1: the
avalanche size s (red impulses, left axis), the variance κ1 (blue
lines, left axis) and the total force of the system after each
avalanche X(i) (green dotted lines, right axis) are plotted vs.
the number of avalanches i. Panel (b) is an excerpt of (a) and
shows the approach of κ1 to κ1 = 0.070 (thick horizontal blue
line) as the system approaches SOC. (For an extension of this
figure to 106 avalanches, see the text.)

if it is extended to 106 avalanches.) The model discussed
here leads to a power law with a realistic b-value of the
Gutenberg-Richter law. In particular, de Sousa Vieira [33]
concluded that the distribution of avalanche sizes s is a
power law with an exponent τ ≈ 1.54 that corresponds to
b≈ 0.81. This lies in the range (0.8 to 1.2) of the b-values
found experimentally [37]. In spite of this agreement,
however, the Burridge-Knopoff model cannot account
for the observed spatiotemporal complexity of seismicity,
e.g. Omori’s law for aftershocks [24].
In the focal region of a future EQ the stress gradually

changes before failure. In that region containing ionic
materials with aliovalent impurities, extrinsic defects are
present due to charge compensation. These defects are
attracted by nearby aliovalent impurities, thus forming
electric dipoles that can change their orientation in space
through defect migration [28]. Stress variations affect the
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Fig. 2: (Color online) The average value of κ1 (thick solid red
line), together with the one standard deviation (±σ) interval
(magenta dotted lines), when decreasing f̄l to (a) 99%, (b) 98%
and (c) 90% of its value at SOC vs. the number of avalanches
i taken into account in the natural-time calculation. These
values have been obtained by numerical modelling as follows:
We considered 103 systems with the initial fl values randomly
scattered around f0 = 0.87. Each system was driven to SOC
and in order to obtain a reliable series (flSOC ), l= 1, 2, . . . , L,
the first 107 avalanches were ignored in natural-time analysis.
Then, each of these fl values was reduced to 99%, 98% and
90%, respectively, of its value at SOC, i.e., flSOC , and natural-
time analysis was initiated (i= 0). The horizontal dashed green
line corresponds to κ1 = 0.070, while the thick black solid one
to κu = 1/12. We observe that in all cases, κ1 approaches
the critical value (κ1 = 0.070) as the number of avalanches i
increases, and the system returns to SOC.
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Fig. 3: A map of the area N38.536.2W
120.7
122.7 (shaded) surrounding the

epicenter of the Loma Prieta earthquake (large star) in which
the seismicity after the initiation on 12 September 1989 of
the precursory magnetic-field variations is analyzed in natural
time.

thermodynamic parameters of this migration, thus may
result in gradual decrease of the relaxation time of these
dipoles. When the stress reaches a critical value [28],
a cooperative orientation of these electric dipoles takes
place that reflects the emission of a transient electric
signal, which constitutes the SES, and later the failure
occurs. It is commonly accepted that, after the mainshock
occurrence, the stress value reduces to a smaller value, a
fact however which is not fully captured by the simple
Burridge-Knopoff model considered here. In other words,
in the steady SOC state of this model the system has
an average fl value, f̄l, around f̄l = 0.8785 that remains
almost constant (i.e., practically within 0.0055) after the
occurrence of any avalanche (cf. X(i) in fig. 1). Our
computations reveal (see fig. 2) that when considering
a reasonable decrease, e.g., by a few percent, of f̄l, the
system exits the steady SOC state and then returns to
it through a transient in which κ1 value scatters around
0.070, similar to that depicted in fig. 1. Hence, the value
κ1 = 0.070 can be considered as quantifying the extent of
the organization of the complex system at the onset of the

critical stage. We emphasize that such a behavior is not
observed for a variant of the model which does not exhibit
SOC [33], e.g., when using, instead of a periodic function
Ψ(x), the strictly non-increasing function introduced by
Nakanishi [38].
To examine whether the aforementioned condition κ1 ≈

0.070 is applicable to real earthquakes, we now consider,
as mentioned, the example of the 18 October 1989 Loma
Prieta earthquake. To the best of our knowledge, this is the
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Table 1: The seismic data analyzed in natural time. The magnitude M corresponds either to ML or Md reported from the
Northern California Earthquake Data Center (http://www.ncedc.org/ncedc/catalog-search.html) available on 8 January
2010. This is converted to seismic moment according to log10M0 = 1.5ML+const.

Number Magnitude M Date Time (UT) Lattitude Longitude
1 2.7 1989/9/16 18:41:24 37.33 −121.70
2 3.2 1989/9/28 15:42:37 36.57 −121.11
3 2.7 1989/10/1 12:21:37 38.15 −121.90
4 3.0 1989/10/1 13:10:24 38.14 −121.93
5 3.2 1989/10/1 13:19:27 38.16 −121.93
6 3.1 1989/10/1 22:08:35 36.56 −121.15
7 3.1 1989/10/1 22:09:17 36.56 −121.15
8 2.7 1989/10/2 11:20:19 38.15 −121.91
9 2.6 1989/10/6 15:53:36 37.32 −122.11
10 3.3 1989/10/8 12:36:46 36.44 −121.01
11 2.7 1989/10/9 11:51:24 37.63 −121.70
12 2.7 1989/10/9 12:06:02 37.29 −122.09
13 3.1 1989/10/9 12:42:03 37.63 −121.69
14 2.8 1989/10/13 12:22:11 36.63 −121.08
15 7.0 1989/10/18 00:04:15 37.04 −121.88

most well-known case in USA for which clear precursory
electromagnetic variations were reported. Almost one
month before this earthquake, i.e., on 12 September 1989,
anomalous magnetic-field variations were recorded at a
site just 7 km from the earthquake epicenter [39,40]. These
are strikingly similar to the magnetic-field variations that
accompany the SES activities observed in Greece for
earthquakes with magnitude 6.5 or larger [41].
We now analyze in natural time all the events (earth-

quakes) that occurred after 12 September 1989, which
is the date of the initiation of the aforementioned (SES
like) precursory magnetic-field change, within the area
N38.536.2W

120.7
122.7 (hereafter labelled A, shaded in fig. 3)

surrounding the earthquake epicenter. The seismic data
used here (see table 1) are from the Northern California
Earthquake Data Center and the relevant epicenters are
depicted in fig. 3 (small stars). We set the natural time
to zero at the initiation time of the magnetic change,
and then formed time series for the area A each time a
small earthquake (with magnitude M exceeding a certain
threshold Mthres, i.e., M �Mthres) occurred, i.e., when
the number of the events is increased by one. The quantity
κ1 for each of the time series was computed for the pairs
(χk, Qk). The quantity Qk was taken as the seismic
moment M0k of the k-th event, since M0 is roughly
proportional to the energy released during an earthquake
calculated from the relation log10M0 ≈ 1.5ML+constant
(H. Kanamori, personal communication). Note, however,
that when the area A reaches criticality, one expects in
general, from spatial invariance of criticality, that all
subareas also reach criticality simultaneously. Thus, in
order to check whether criticality has been approached at
the occurrence of a new event k within the area A, we
construct all the possible subareas of AMthres that neces-
sarily include the event k and examine if their κ1 values
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Fig. 4: A three-dimensional plot of Prob(κ1), z-axis, vs. κ1
(y-axis) for the seismicity as it evolves event by event (x-axis)
in the area N38.536.2W

120.7
122.7, for Mthres = 2.6, subsequent to the

initiation on 12 September 1989 of the precursory (SES like)
magnetic-field variations. The last event (No. 14), for which
Prob(κ1) maximizes at κ1 = 0.070 (thick black line), corre-
sponds to the magnitude 2.8 earthquake that occurred
at 12:22 UT on 13 October 1989 with an epicenter at
36.63◦N121.08◦W.

reveal a probability distribution Prob(κ1) maximized at
0.070 (see ref. [42] for more details). Following Davidsen
et al. [43], we considered only earthquakes with M > 2.5
in order to have homogeneous and complete catalog. In
other words, we takeMthres = 2.6. The results are depicted
in fig. 4, which shows how Prob(κ1) vs. κ1 evolves upon
the occurrence of each event before the 18 October 1989,
Ms7.1 Loma Prieta earthquake. We see that Prob(κ1)
maximizes at κ1 = 0.070 upon the occurrence of a 2.8
event at 12:22UT on 13 October 1989, i.e., almost 5 days
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before the mainshock. This calculation considers of course
only theM0k values of the events that occurred until 12:22
UT on 13 October 1989. The same behavior is found when
repeating the calculation for larger-magnitude thresholds,
i.e., Mthres = 2.7 and 2.8, showing that the maximum
of Prob(κ1) vs. κ1 is again observed at κ1 = 0.070 on
13 October 1989.
To summarize: First, natural-time analysis was made for

a one-dimensional self-organized criticality model intro-
duced to describe avalanches in stik-slip phenomena. It
belongs to the same universality class as the train model
for earthquakes that was originally suggested by Burridge
and Knopoff [9]. We found that the condition κ1 = 0.070
is obeyed when the system acquires criticality immedi-
ately after the transient regime. Second, as an exam-
ple to examine whether this condition is applicable to
real earthquakes, we analyzed in natural time the seis-
micity before the 18 October 1989, Ms7.1 Loma Prieta
earthquake. It was found that, in the area surround-
ing the epicenter of the Loma Prieta earthquake, the
small earthquakes that occurred after the initiation on 12
September 1989 of the precursory (SES like) magnetic-
field variations [39,40] attained criticality five days before
the occurrence of the mainshock. It was also found that
this condition held exhibiting spatial as well as magnitude
threshold invariance.
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