
Order parameter fluctuations of seismicity in natural time before and after mainshocks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 EPL 91 59001

(http://iopscience.iop.org/0295-5075/91/5/59001)

Download details:

IP Address: 195.134.94.87

The article was downloaded on 02/12/2010 at 07:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/91/5
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


September 2010

EPL, 91 (2010) 59001 www.epljournal.org

doi: 10.1209/0295-5075/91/59001

Order parameter fluctuations of seismicity in natural time before
and after mainshocks

N. V. Sarlis, E. S. Skordas and P. A. Varotsos(a)

Solid State Section and Solid Earth Physics Institute, Physics Department, University of Athens
Panepistimiopolis, Zografos 157 84, Athens, Greece, EU

received 27 April 2010; accepted in final form 16 August 2010
published online 21 September 2010

PACS 91.30.Ab – Theory and modeling, computational seismology
PACS 89.75.Da – Systems obeying scaling laws
PACS 95.75.Wx – Time series analysis, time variability

Abstract – It is widely accepted that the observed earthquake scaling laws indicate the proximity
of the system to a critical point. Using the order parameter (OP) for seismicity suggested on the
basis of natural time as well as the detrended fluctuation analysis of the magnitude time-series,
we investigate the behavior of seismicity before and after significant earthquakes. The analysis
reveals that the fluctuations of the OP before major earthquakes exhibit a characteristic feature
which, if quantified properly, may be used as decision variable to predict the occurrence of a large
earthquake in the next time step based solely on the magnitudes of previous earthquakes.

Copyright c© EPLA, 2010

Earthquakes (EQs) do exhibit complex correlations in
time, space and magnitude (m), the study of which has
been the object of several recent works, e.g. [1–18]. Addi-
tionally, it has been repeatedly proposed that the observed
EQ scaling laws indicate the existence of phenomena asso-
ciated with proximity of the system to a critical point
(e.g., [10,19], see also ref. [20] and references therein).
In this frame, it has been suggested [21] that an order
parameter (OP) for seismicity can be defined (see below)
on the basis of natural time [22–24] (see fig. 1). It was
through the probability density function (pdf) of this para-
meter, that it was possible to demonstrate [25] that the
seismicities in various regions (as well as the worldwide
seismicity) give rise to pdf curves that collapse on the
same master (universal) curve. Moreover, the study of
the OP fluctuations, relative to the standard deviation
of its distribution, revealed [21] that the scaled distri-
butions collapse on the same curve, which interestingly
exhibits, over four orders of magnitude, features similar to
those [26–31] in several equilibrium critical phenomena as
well as in nonequilibrium systems. Such a behavior is strik-
ingly reminiscent of the one found earlier in the analysis of
non-stationary biological signals including heart rate [32],
locomotor activity [33] etc, where pdf curves obtained for
different scales of observation fall onto a single master
curve.

(a)E-mail: pvaro@otenet.gr
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Fig. 1: Schematic diagram showing how a series of earthquakes
is read in conventional time (upper panel) and in natural time
(lower panel).

In a recent study [14], it has been undoubtedly shown
that, in the regimes of stationary seismic activity, long-
range correlations exist between successive EQ magni-
tudes and interoccurrence times. Moreover, a separate
study [16] showed that the fluctuations of seismic activity,
defined as the detrended cumulated sum of the magni-
tude time-series, exhibit Family-Vicsek dynamic scaling.
In both studies, the sequence index k, i.e., the sequential
order in which an EQ had occurred, has been used for the
detection of the long-range correlations (e.g., see fig. 3 that
will be discussed later). Notice that it is the combination
of this index with the released seismic energy Ek during
the k-th EQ (Ek is interrelated [34] with the magnitude
through Ek ∼ 10cmk —where c is around 1.5) that consti-
tutes the two quantities k, Ek which are in fact used in
the analysis in natural time [21,22,35].
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In a time-series comprising of N earthquakes (see fig. 1)
the natural time χk = k/N serves as an index [22,35]
for the occurrence of the k-th EQ. The evolution of the
pair (χk, Ek) is studied [21,22,35–39] by means of the
normalized power spectrum given by

Π(ω) =

∣∣∣∣∣
N∑
k=1

pk exp

(
iω
k

N

)∣∣∣∣∣
2

, (1)

where pk stands for pk =Ek/
∑N
n=1En, ω= 2πφ and φ

denotes the natural frequency. In natural time analysis
the properties of Π(ω) or Π(φ) are studied [21,22,35,36]
for natural frequencies φ less than 0.5. This is so, because
in this range of φ, Π(ω) or Π(φ) reduces to a characteristic
function for the probability distribution pk in the context
of probability theory. According to the probability theory,
the moments of a distribution and hence the distribution
itself can be approximately determined once the behavior
of the characteristic function of the distribution is known
around zero. For ω→ 0, eq. (1) leads to [21–23]

Π(ω)≈ 1−κ1ω2, (2)

where κ1 is the variance of χ given by

κ1 =

N∑
k=1

pkχ
2
k −
(
N∑
k=1

pkχk

)2
. (3)

The quantity Π(ω) for ω→ 0 (or κ1) can be considered [21]
as an order parameter for seismicity since its value changes
abruptly when a main shock occurs. In a seismic cata-
logue comprising W events, the following procedure was
followed: starting from the first EQ, we calculate the
κ1-values using N = 6 to 40 consecutive events (includ-
ing the first one). We next turn to the second EQ, and
repeat the calculation of κ1. After sliding, event by event,
through the whole earthquake catalogue, the calculated
κ1 values enable the construction of the pdf P (κ1). For
example, upon using the Southern California Earthquake
catalogue, the pdf P (κ1) depicted with black plus symbols
in fig. 2 is obtained from the natural time analyis of
all the W = 85862 EQs with m� 2 that occurred during
the period 1981–2003 within the area N3732W

122
114 (here-

after called SCEC). In ref. [21], the statistical properties
of κ1 (i.e., the OP of seismicity in natural time) have
been studied by means of the scaled [26] distribution:
σ(κ1)P{[κ1−µ(κ1)]/σ(κ1)}, where µ(κ1) and σ(κ1) stand
for the average value and the standard deviation of the κ1
values calculated. This is the scaled distribution for seis-
micity that exhibits, as mentioned above, features simi-
lar to those obtained by studying [26–31] the OPs of
several equilibrium critical phenomena and in nonequilib-
rium systems.
We now turn to the problem of the detection of tempo-

ral correlations in the EQ magnitude time-series mk. The
existence of temporal correlations in seismicity has been
already treated on the basis of natural time analysis in
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Fig. 2: (Color online) The probability density function
P (κ1) vs. κ1 for SCEC (black plus, all panels) along with the
ones resulting from (1) the aftershock sequence as reported
in ref. [44] for the Landers EQ (a) and the Hector Mine
EQ (b). The results (2) to (7) depict P (κ1) for W = 5000,
3000, 1000 EQs immediately after and W = 5000, 3000, 1000
EQs immediately before the Landers EQ (a) and the Hector
Mine EQ (b), respectively. In panel (c), we depict the results
for: (1) 1000 EQs immediately before the Landers EQ, (2) 1000
EQs immediately after the Landers EQ, (3) 5000 EQs imme-
diately before the Hector Mine EQ, (4) 5000 EQs immediately
after the Hector Mine EQ.

refs. [38,39], but here we focus on the recent study [14]
of the detrended fluctuation analysis (DFA) [40,41] for
the detection of long-range temporal correlations in mk.
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DFA has been established as a robust method suitable
for detecting long-range power law correlations embed-
ded in non-stationary signals (for recent applications
see refs. [42,43]) and can be summarized as follows: we
first find the average value m̄ and determine the profile
y(i) =

∑i
k=1(mk − m̄), i= 1, . . . ,W . We then divide this

profile of length W into W/l(≡Wl) non-overlapping frag-
ments of l-observations. Next, we define the detrended
process yl,ν(m), in the ν-th fragment, as the difference
between the original value of the profile and the local
linear trend. We then calculate the mean variance of
the detrended process: F 2DFA(l) =

1
Wl

∑Wl
ν=1 f

2(l, ν) where

f2(l, ν) = 1
l

∑l
m=1 y

2
l,ν(m). If FDFA(l)∼ lα, the slope of

the logFDFA(l) vs. log l plot, leads to the value of the
exponent αDFA ≡ α. If αDFA=0.5, there is no correlation
and the signal is uncorrelated (white noise); if αDFA < 0.5,
the signal is anti-correlated; if αDFA > 0.5, the signal
is correlated and specifically the case αDFA = 1.5 corre-
sponds to the Brownian motion (integrated white noise).
Figure 3 depicts with black plus symbols the result-

ing log10[FDFA(l)] vs. log10(l) for the whole SCEC data.
A crossover is observed at k= l≈ 200, below which the
α-value is close to 0.61(≡ αlow). This value agrees fairly
well with the one α= 0.59(5) obtained in ref. [14] when
solely analyzing the periods of stationary seismic activ-
ity. Thus, the substantially higher value (αhigh = 0.93)
obtained for scales larger than l≈ 200 emerged upon the
inclusion of the “non-stationary” periods of seismic activ-
ity in the present study. To further shed light on the
origin of this crossover, we examined the behavior of the
magnitude time-series before and after the two most signif-
icant earthquakes reported in SCEC, i.e., the Landers EQ
(fig. 3(a)) with magnitude 7.3 (that occurred at 11:57 UT
on June 28, 1992 with an epicenter at 34.2◦N 116.4◦W)
and the Hector Mine EQ (fig. 3(b)) with magnitude 7.1
(that occurred at 09:46 UT on October 16, 1999 with an
epicenter at 34.6◦N 116.3◦W). The aftershock magnitude
time-series for both these mainshocks, as identified [44]
by examining the corresponding Omori law regimes, have
been analyzed in natural time [38]. The corresponding pdfs
P (κ1), depicted with the red plus symbols in figs. 2(a)
and (b), respectively, were found [38] to almost coincide
with the P (κ1) for the whole SCEC. This could be inter-
preted as a “return” of the seismic activity to its mean
behavior after the completion of the aftershock sequence.
The application of DFA to both aftershock time-series is
shown by the red plus symbols in figs. 3(a) and (b), respec-
tively. Interestingly, an inspection of this figure also reveals
that the scaling behavior of DFA in both aftershock series
is close to that of the whole SCEC, thus being in accor-
dance with the previous result of the natural time analysis.
Notice that the crossover still persists.
In order to further shed light on the analysis, we exam-

ined the magnitude time-series with lengths W = 5000,
3000 and 1000 EQs just before and just after these two
EQs in SCEC. The corresponding results of DFA are given
in figs. 3(a) and (b) for the Landers and the Hector Mine
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Fig. 3: (Color online) Detrended fluctuation analysis of SCEC
(black plus) along with those (1) of the aftershock sequence as
reported in ref. [44] for the Landers EQ (a) and the Hector Mine
EQ (b). The points (2) to (7) depict the DFA of W = 5000,
3000, 1000 EQs immediately after and W = 5000, 3000, 1000
EQs immediately before the Landers EQ (a) and the Hector
Mine EQ (b), respectively. The straight lines with α= 0.61 and
0.93 have been drawn as a guide to the eye.

EQ, respectively. They show that the high value of the
DFA exponent α at longer scales should be attributed to
the highly correlated “immediate” aftershocks (e.g., for
W = 1000 see the blue circles in fig. 3). We now proceed
to the study of the magnitude time-series solely before
these two mainshocks. These DFA results suggest that
the α value for scales longer than the crossover is now
(see the squares, triangles and inverted triangles in fig. 3)
significantly smaller than in the case of aftershocks, and
much closer to that for scales shorter than the crossover.
Thus, the crossover effect is definitely smoothed in the
magnitude time-series that end just before a mainshock.
A closer inspection of the inverted triangles, i.e., the
results obtained fromW = 1000 EQs just before the main-
shock, indicates that the DFA scaling exponent becomes
even smaller than αlow(= 0.61) and the values obtained are
α= 0.53(2) and α= 0.50(2) for the Landers and the Hector
Mine EQ, respectively. Thus, the “foreshocks” appear to
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exhibit correlations that are somewhat weaker than those
found [14] in the stationary seismicity (cf. recall ref. [14]
reported α= 0.59(5) for stationary periods).
The results of the natural time analysis of the time-

series with W = 5000, 3000 and 1000 EQs just before and
just after Landers and Hector Mine EQ are shown in
fig. 2(a) and (b), respectively. In particular, we observe
that the pdf P (κ1) vs. κ1 curves differ in general from
the relevant curve obtained from whole SCEC or from the
aftershock time-series identified in ref. [44]. This reveals
that either before or after a significant EQ, the seismicity
deviates from its mean behavior in natural time. The most
important difference, however, is noticed when we compare
the pdfs P (κ1) before and after a significant EQ. For
example, in fig. 2(c) when plotting P (κ1) vs. κ1, for W =
1000 EQs, before and after the Landers EQ with the thick
red and the thin red line, respectively, they are markedly
different. Thus, natural time analysis made it possible to
reveal the following picture of profound importance: Before
the Landers EQ a significant bimodal feature appears
in P (κ1) vs. κ1, which is strikingly reminiscent of the
bimodal feature observed in the pdf of the order parameter
when approaching (from below) Tc in equilibrium critical
phenomena (e.g., see fig. 13(b) of ref. [38]). Since it has
been suggested [21] that κ1 is an order parameter for
seismicity, a similar behavior should be expected before
every mainshock in SCEC. For example, in fig. 2(c), we
also depict P (κ1) vs. κ1 for W = 5000 events before and
after the Hector Mine EQ with the thick blue and the thin
blue line, respectively. We again observe that the bimodal
feature is much more significant in the curve before the
mainshock. In what remains we assume that the variability
β ≡ σ(κ1)/µ(κ1) constitutes, at a first approximation, a
measure to quantify the presence of this bimodal behavior.
If the presence of a bimodal feature in P (κ1) vs.
κ1 actually signifies the occurrence of an impending
mainshock, then the quantity β can, in principle, be
used as a decision variable to predict the occurrence of
a large earthquake solely based on the past magnitudes,
in a fashion analogous to that followed by the authors
of ref. [45] where in self-organized critical sandpiles the
past avalanches were used for the prediction of a future
avalanche exceeding a certain threshold to occur in the
next time step. Such a “prediction” scheme should not
be confused with the one achieved when the seismic data
are enriched (supplemented) with geoelectrical data which
enable the detection of precursory electric field changes
termed Seismic Electric Signals (SES) [46–51] on the basis
of which the epicentral area and the magnitude of the
impending mainshock can be determined [52,53]. Once
the latter are available, the natural time analysis of the
seismicity (in the future epicentral area) that occurs after
the SES detection, leads to the identification of the time
window of the impending mainshock within a narrow
range of a few days to one week [37,38,54–57].
Hereafter, we proceed as follows: For each event mk in

SCEC, we estimate κ1 =
∑40
N=6 κ1(N)/35, i.e., the average

value of the κ1’s that we calculated upon considering
N = 6 to 40 consecutive EQs (including the k-th event).
Next, we assign this value to k′-th, k′ = k+40, element
of the time-series the κ(k′)≡ κ1. Following this way, κ(k′)
has no information of the event with magnitude mk′ which
is the 40-th EQ that occurred after mk. We can now
estimate, for various windows of W EQs, the time-series
of the average values

µk′(W )≡ 1
W

k′∑
n=k′−W+1

κ(n), (4)

which is equivalent to µ(κ1) obtained when considering a
catalog consisting of the W EQs that occurred just before
mk′ . In addition, the time-series of standard deviations
can be obtained from

σk′(W )≡
√√√√ 1
W

k′∑
n=k′−W+1

[κ(n)−µk′(W )]2, (5)

and the variability time-series is given by

βk′(W ) =
σk′(W )

µk′(W )
. (6)

We will now examine whether βk′ can be used as a deci-
sion variable for binary “predictions”. Following the termi-
nology of Keilis-Borok and coworkers [58,59], the time
increased probability (TIP) is turned on when βk(W )�βc,
where βc is a given threshold in the prediction. If the
magnitude mk is greater than or equal to a target thresh-
old Mthres, we have a successful prediction. For the
present case of binary predictions, the prediction of events
becomes a classification task, with two type of errors: miss-
ing an event and giving a false alarm. We therefore choose,
following ref. [45], the receiver operating characteristics
(ROC) [60] as the method to analyze here the predic-
tion quality. This is a plot of the hit rate vs. the false
alarm rate, which here is tuned by the threshold βc. Only
if in between the hit rate exceeds the false alarm rate, the
predictor is useful. Random predictions generate equal hit
and false alarm rate, and hence they lead to the diag-
onal in ROC plot, see the black straight lines in figs. 4
and 5. (If βc is maximum, both hit rate and false alarm
rate are zero, while for very small βc values both rates
tend to unity.) Thus, only when the points lie above this
diagonal the predictor is useful. Figure 4 depicts the ROC
curves, for various values of Mthres = 3.0 to 4.5, together
with the results obtained when using, for example, two
randomly shuffled copies (green and red circles) of SCEC.
The results for various W values are shown, i.e., W = 70,
300, 1000 and 3000, in figs. 4(a) to (d), respectively. In
all cases, the results are better (i.e., points lying above
the diagonal) for the original SCEC catalogue than the
randomly shuffled ones. This indicates that the predictive
power of βk(W ) stems from temporal correlations present
in the actual seismicity.
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Fig. 4: (Color online) The ROC curves constructed using
βk(W ) as decision variable, for W = 70, 300, 1000 and 3000,
are depicted in panels (a) to (d), respectively. The blue
broken lines correspond to the ROC curves obtained when
considering the target thresholds Mthres =3 to 4.5 (cf. there
are only 212 events with mk � 4.5). The ROC for Mthres = 4
is shown in light blue as a guide. The red (1) and green (2)
circles correspond to exactly the same analysis, but performed
for two independent randomly shuffled copies of SCEC, and
fall around the diagonal of chancy predictions, because the
temporal correlations between consecutive EQs are now lost.

In order to further examine the statistical significance of
this “prediction” scheme, we depict in fig. 5 the results for
W = 1000 together with the results of 102 runs of the same
catalogue when using as decision variable a uniformly
distributed random number in the same range as βk(1000).
We observe that none of these runs outperforms βk(1000)
for false alarm rates from 20% to 60%. Thus, βk(1000)
has predictive power which is statistically significant.
The inset of fig. 5 depicts the ratio of the hit rate
over the false alarm rate vs. Mthres, which shows that
the prediction results become better upon increasing
Mthres. For example, whenMthres = 4 (light blue line with
squares) the hit rate is approximately 60% when the false
alarm rate is 50%. The TIP can be visualized in fig. 6,
where the red shaded areas corresponds to the periods
when the TIP is on (i.e., βk(1000)� 0.35). The results
convincingly outperform chance, but are not spectacular.
This (which remains so when using, instead of β, the
kurtosis, see the black dots in fig. 6) is not unreasonable
in view of the fact that when using a constant W it may
not correspond to the time at which the focal area of the
impending mainshock enters into the critical regime which
is captured however by the SES detection when available.
In conclusion, we made use of the order parameter
κ1 of seismicity defined [21] in natural time together
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when βk(W )� 0.35, show when the TIP is on. The black dots
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with the DFA of the magnitude time-series to investigate
the period before and after a significant mainshock. The
study was focused on two significant EQs that occurred
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in Southern California in 1992 and 1999, i.e., the Landers
and the Hector Mine earhquakes. Magnitude time-series
for various lengths ofW EQs that occurred before or after
the main shock have been considered. Quite interestingly,
the natural time analysis of these time-series, reveals that
“foreshocks” exhibit a behavior characteristic of systems
close to their critical point: i.e., upon considering the order
parameter of seismicity κ1 the probability distribution
function P (κ1) vs. κ1 exhibits a bimodal feature. In
an attempt to quantify this feature, we considered the
variability of κ1, which was then used as decision variable
for the “prediction” of the occurrence of a large earthquake
in the next time step based solely on the magnitudes of
previous earthquakes. The results outperform chance.
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